【題目】設n≥2,n∈N* , 有序數組(a1 , a2 , …,an)經m次變換后得到數組(bm , 1 , bm , 2 , …,bm , n),其中b1 , i=ai+ai+1 , bm , i=bm﹣1 , i+bm﹣1 , i+1(i=1,2,…,n),an+1=a1 , bm﹣1 , n+1=bm﹣1 , 1(m≥2).例如:有序數組(1,2,3)經1次變換后得到數組(1+2,2+3,3+1),即(3,5,4);經第2次變換后得到數組(8,9,7).
(1)若ai=i(i=1,2,…,n),求b3 , 5的值;
(2)求證:bm , i= ai+jCmj , 其中i=1,2,…,n. (注:i+j=kn+t時,k∈N* , i=1,2,…,n,則ai+j=a1)
【答案】
(1)解:依題意(1,2,3,4,5,6,7,8,…,n),
第一次變換為(3,5,7,9,11,13,15,…,n+1),
第二次變換為(8,12,16,20,24,28,…,n+4),
第三次變換為(20,28,36,44,52,…,n+12),
∴b3,5=52
(2)解:用數學歸納法證明:對m∈N*,bm,i= ai+jCmj,其中i=1,2,…,n,
(i)當m=1時,b1,i= ai+jC1j,其中i=1,2,…,n,結論成立,
(ii)假設m=k時,k∈N*時,bk,i= ai+jCkj,其中i=1,2,…,n,
則m=k+1時,bk+1,i=bk,i+bk,i+1= ai+jCkj+
ai+j+1Ckj=
ai+jCkj+
ai+j+1Ckj﹣1,
=aiCk0+ ai+j(Ckj+Ckj﹣1)+ai+k+1Ckk,
=aiCk+10+ ai+jCk+1j+ai+k+1Ck+1k+1,
= ai+jCk+1j,
所以結論對m=k+1時也成立,
由(i)(ii)可知,對m∈N*,bm,i= ai+jCmj,其中i=1,2,…,n成立
【解析】(1)根據新定義,分別進行1次,2次,3次變化,即可求出答案,(2)利用數學歸納法證明即可.
科目:高中數學 來源: 題型:
【題目】已知美國蘋果公司生產某款iphone手機的年固定成本為40萬美元,每生產1只還需另投入16美元.設蘋果公司一年內共生產該款iphone手機x萬只并全部銷售完,每萬只的銷售收入為R(x)萬美元,且R(x)=
(1)寫出年利潤W(萬元)關于年產量x(萬只)的函數解析式;
(2)當年產量為多少萬只時,蘋果公司在該款手機的生產中所獲得的利潤最大?并求出最大利潤.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓,點
,直線
.
(1)求與圓相切,且與直線
垂直的直線方程;
(2)在直線上(
為坐標原點),存在定點
(不同于點
),滿足:對于圓
上任一點
,都有
為一常數,試求所有滿足條件的點
的坐標.
【答案】(1);(2)答案見解析.
【解析】試題分析:
(1)設所求直線方程為,利用圓心到直線的距離等于半徑可得關于b的方程,解方程可得
,則所求直線方程為
(2)方法1:假設存在這樣的點,由題意可得
,則
,然后證明
為常數
為即可.
方法2:假設存在這樣的點,使得
為常數
,則
,據此得到關于
的方程組,求解方程組可得存在點
對于圓
上任一點
,都有
為常數
.
試題解析:
(1)設所求直線方程為,即
,
∵直線與圓相切,∴,得
,
∴所求直線方程為
(2)方法1:假設存在這樣的點,
當為圓
與
軸左交點
時,
;
當為圓
與
軸右交點
時,
,
依題意,,解得,
(舍去),或
.
下面證明點對于圓
上任一點
,都有
為一常數.
設,則
,
∴
,
從而為常數.
方法2:假設存在這樣的點,使得
為常數
,則
,
∴,將
代入得,
,即
對
恒成立,
∴,解得
或
(舍去),
所以存在點對于圓
上任一點
,都有
為常數
.
點睛:求定值問題常見的方法有兩種:
(1)從特殊入手,求出定值,再證明這個值與變量無關.
(2)直接推理、計算,并在計算推理的過程中消去變量,從而得到定值.
【題型】解答題
【結束】
22
【題目】已知函數的導函數為
,其中
為常數.
(1)當時,求
的最大值,并推斷方程
是否有實數解;
(2)若在區間
上的最大值為-3,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,已知點
為直線
上一點,過點
作
的垂線與以
為直徑的圓
相交于
,
兩點.
(1)若,求圓
的方程;
(2)求證:點始終在某定圓上.
(3)是否存在一定點(異于點
),使得
為常數?若存在,求出定點
的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,某機械廠要將長,寬
的長方形鐵皮
進行裁剪.已知點
為
的中點,點
在邊
上,裁剪時先將四邊形
沿直線
翻折到
處(點
分別落在直線
下方點
處,
交邊
于點
),再沿直線
裁剪.
(1)當時,試判斷四邊形
的形狀,并求其面積;
(2)若使裁剪得到的四邊形面積最大,請給出裁剪方案,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=2x﹣a,g(x)=x+2.
(1)當a=1時,求不等式f(x)+f(﹣x)≤g(x)的解集;
(2)求證: 中至少有一個不小于
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓E: +
=1(a>b>0)的兩個焦點與短軸的一個端點是直角三角形的3個頂點,直線l:y=﹣x+3與橢圓E有且只有一個公共點T.
(Ⅰ)求橢圓E的方程及點T的坐標;
(Ⅱ)設O是坐標原點,直線l′平行于OT,與橢圓E交于不同的兩點A、B,且與直線l交于點P.證明:存在常數λ,使得|PT|2=λ|PA||PB|,并求λ的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,直線l的參數方程為 (t為參數),以坐標原點O為極點,x軸的正半軸為極軸的極坐標系中,曲線C的極坐標方程為ρ2﹣2ρcosθ﹣4=0
(1)若直線l與曲線C沒有公共點,求m的取值范圍;
(2)若m=0,求直線l被曲線C截得的弦長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com