已知等差數(shù)列,公差
不為零,
,且
成等比數(shù)列;
⑴求數(shù)列的通項(xiàng)公式;
⑵設(shè)數(shù)列滿足
,求數(shù)列
的前
項(xiàng)和
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知等差數(shù)列滿足:
.
(1)求的通項(xiàng)公式;
(2)若(
),求數(shù)列
的前n項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知,數(shù)列
的前
項(xiàng)和為
,點(diǎn)
在曲線
上
,且
,
.
(1)求數(shù)列的通項(xiàng)公式;
(2)數(shù)列的前
項(xiàng)和為
,且滿足
,
,求數(shù)列
的通項(xiàng)公式;
(3)求證:,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知等差數(shù)列的首項(xiàng)
,
,前
項(xiàng)和為
.
(I)求及
;
(Ⅱ)設(shè),
,求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
數(shù)列前
項(xiàng)和
,數(shù)列
滿足
(
),
(1)求數(shù)列的通項(xiàng)公式;
(2)求證:當(dāng)時(shí),數(shù)列
為等比數(shù)列;
(3)在題(2)的條件下,設(shè)數(shù)列的前
項(xiàng)和為
,若數(shù)列
中只有
最小,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知等差數(shù)列{an}的前n項(xiàng)和為Sn,公差d≠0,且成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)是首項(xiàng)為1,公比為3的等比數(shù)列,求數(shù)列{bn}的前n項(xiàng)和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知等差數(shù)列的前
項(xiàng)和為
,
.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列
的前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)數(shù)列的各項(xiàng)均為正實(shí)數(shù),
,若數(shù)列
滿足
,
,其中
為正常數(shù),且
.
(1)求數(shù)列的通項(xiàng)公式;
(2)是否存在正整數(shù),使得當(dāng)
時(shí),
恒成立?若存在,求出使結(jié)論成立的
的取值范圍和相應(yīng)的
的最小值;若不存在,請(qǐng)說(shuō)明理由;
(3)若,設(shè)數(shù)列
對(duì)任意的
,都有
成立,問(wèn)數(shù)列
是不是等比數(shù)列?若是,請(qǐng)求出其通項(xiàng)公式;若不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知等比數(shù)列中,
且
,
,
成等差數(shù)列,
(1)求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的前
項(xiàng)的和.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com