日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

【題目】數(shù)列{an}為遞增的等差數(shù)列,數(shù)列{bn}滿足bnanan+1an+2nN*),設(shè)Sn為數(shù)列{bn}的前n項和,若a2,則當Sn取得最小值時n的值為(

A.14B.13C.12D.11

【答案】B

【解析】

先根據(jù)條件求得數(shù)列{an}的通項,得到何時值為正,何時為負,進而得到數(shù)列{bn}正負的分界線,即可求得結(jié)論.

解:因為數(shù)列{an}為遞增的等差數(shù)列,設(shè)其公差為d,則d0

因為a2

a1+da1+6da1d

ana1+n1d=(nd

時,an0

時,an0

∵數(shù)列{bn}滿足bnanan+1an+2nN*),設(shè)Sn為數(shù)列{bn}的前n項和,

故數(shù)列{bn}13項為負值;

故當n13時,Sn取得最小值;

故選:B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著快遞行業(yè)的崛起,中國快遞業(yè)務(wù)量驚人,2018年中國快遞量世界第一,已連續(xù)五年突破五百億件,完全超越美日歐的總和,穩(wěn)居世界第一名.某快遞公司收取費的標準是:不超過1kg的包裹收費8元;超過1kg的包裹,在8元的基礎(chǔ)上,每超過1kg(不足1kg,按1kg計算)需再收4元.

該公司將最近承攬(接收并發(fā)送)的100件包裹的質(zhì)量及件數(shù)統(tǒng)計如下(表1):

表1:

公司對近50天每天承攬包裹的件數(shù)(在表2中的“件數(shù)范圍”內(nèi)取的一個近似數(shù)據(jù))、件數(shù)范圍及天數(shù),列表如下(表2):

表2:

(1)將頻率視為概率,計算該公司未來3天內(nèi)恰有1天攬件數(shù)在100~299之間的概率;

(2)①根據(jù)表1中最近100件包裹的質(zhì)量統(tǒng)計,估計該公司對承攬的每件包裹收取快遞費的平均值:

②根據(jù)以上統(tǒng)計數(shù)據(jù),公司將快遞費的三分之一作為前臺工作人員的工資和公司利潤,其余用作其他費用.目前,前臺有工作人員5人,每人每天攬件數(shù)不超過100件,日工資80元.公司正在考慮是否將前臺人員裁減1人,試計算裁員前、后公司每天攬件數(shù)的數(shù)學(xué)期望;若你是公司決策者,根據(jù)公司每天所獲利潤的期望值,決定是否裁減前臺工作人員1人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在四邊形中:.點為四邊形的外接圓劣弧(不含)上一動點.

1)證明:

2)若,設(shè),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的兩個焦點和短軸的兩個頂點構(gòu)成的四邊形是一個正方形,且其周長為.

Ⅰ)求橢圓的方程;

Ⅱ)設(shè)過點的直線與橢圓相交于兩點,關(guān)于原點的對稱點為,若點總在以線段為直徑的圓內(nèi),的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正三棱柱中,底面邊長為2,的中點,三棱柱的體積.

(1)求三棱柱的表面積;

(2)求異面直線所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是等差數(shù)列, 是等比數(shù)列, .

(1)求 的通項公式;

(2)的前項和為,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知如圖, 平面,四邊形為等腰梯形, .

(1)求證:平面平面

(2)已知中點,求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),且).

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)求函數(shù)上的最大值.

【答案】(Ⅰ)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為.(Ⅱ)當時, ;當時, .

【解析】試題分析】(I)利用的二階導(dǎo)數(shù)來研究求得函數(shù)的單調(diào)區(qū)間.(II) 由(Ⅰ)得上單調(diào)遞減,在上單調(diào)遞增,由此可知.利用導(dǎo)數(shù)和對分類討論求得函數(shù)在不同取值時的最大值.

試題解析】

(Ⅰ)

設(shè) ,則.

,∴上單調(diào)遞增,

從而得上單調(diào)遞增,又∵

∴當時, ,當時,

因此, 的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為.

(Ⅱ)由(Ⅰ)得上單調(diào)遞減,在上單調(diào)遞增,

由此可知.

.

設(shè)

.

∵當時, ,∴上單調(diào)遞增.

又∵,∴當時, ;當時, .

①當時, ,即,這時,

②當時, ,即,這時, .

綜上, 上的最大值為:當時,

時, .

[點睛]本小題主要考查函數(shù)的單調(diào)性,考查利用導(dǎo)數(shù)求最大值. 與函數(shù)零點有關(guān)的參數(shù)范圍問題,往往利用導(dǎo)數(shù)研究函數(shù)的單調(diào)區(qū)間和極值點,并結(jié)合特殊點,從而判斷函數(shù)的大致圖像,討論其圖象與軸的位置關(guān)系,進而確定參數(shù)的取值范圍;或通過對方程等價變形轉(zhuǎn)化為兩個函數(shù)圖象的交點問題.

型】解答
結(jié)束】
22

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,圓的普通方程為. 在以坐標原點為極點,軸正半軸為極軸的極坐標系中,直線的極坐標方程為 .

(Ⅰ) 寫出圓 的參數(shù)方程和直線的直角坐標方程;

( Ⅱ ) 設(shè)直線軸和軸的交點分別為為圓上的任意一點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在以下命題中,不正確的個數(shù)為(  )

b共線的充要條件;②若,則存在唯一的實數(shù)λ,使λ;③對空間任意一點O和不共線的三點ABC,若22,則PABC四點共面;④若{}為空間的一個基底,則{}構(gòu)成空間的另一個基底;⑤ |(·|||·||·||.

A. 2B. 3C. 4D. 5

查看答案和解析>>

同步練習(xí)冊答案
主站蜘蛛池模板: 久久网站热最新地址 | 国产成人jvid在线播放 | 日本在线黄色 | 91在线影院 | 天天操天天干天天 | 欧美一区视频在线 | 99久久久99久久国产片鸭王 | 日本最黄视频 | 欧美成人免费一级人片100 | 四虎成人精品永久免费av九九 | 精品久久久久久 | 日韩成人在线看 | 亚洲人成人一区二区在线观看 | 91在线观看网站 | 久久再线视频 | 国产精品久久久久久久久久东京 | www国产亚洲精品久久网站 | 久久美女视频 | 国产一区成人 | 欧美日韩综合 | 午夜影晥| 国产高清小视频 | 国产小视频免费在线观看 | 日韩经典一区 | 久久久久久久999 | 国产成人精品一区二区三区视频 | 一级毛片在线视频 | 四虎8848精品成人免费网站 | 黑色丝袜脚足j国产在线看68 | 亚洲天堂男人 | 欧美精品三区 | 久久精选 | 国产精品www | 91成人精品视频 | 在线播放亚洲 | 久久久久久99 | 免费一级淫片 | 色呦呦网| 91无吗| 亚洲精品第一页 | 久久精品日产第一区二区 |