【題目】某校為了鼓勵學生熱心公益,服務社會,成立了“慈善義工社”.2017年12月,該校“慈善義工社”為學生提供了4次參加公益活動的機會,學生可通過網路平臺報名參加活動.為了解學生實際參加這4次活動的情況,該校隨機抽取100名學生進行調查,數據統計如下表,其中“√”表示參加,“×”表示未參加.
(Ⅰ)從該校所有學生中任取一人,試估計其2017年12月恰參加了2次學校組織的公益活動的概率;
(Ⅱ)若在已抽取的100名學生中,2017年12月恰參加了1次活動的學生比4次活動均未參加的學生多17人,求的值;
(Ⅲ)若學生參加每次公益活動可獲得10個公益積分,試估計該校4000名學生中,2017年12月獲得的公益積分不少于30分的人數.
科目:高中數學 來源: 題型:
【題目】某讀者協會為了了解該地區居民睡前看書的時間情況,從該地區睡前看書的居民中隨機選取了n人進行調查,現將調查結果進行統計得到如圖所示的頻率分布直方圖.則下列說法正確的是( )
A. 睡前看書時間介于40~50分鐘的頻率為0.03
B. 睡前看書時間低于30分鐘的頻率為0.67
C. 若n=1000,則可估計本次調查中睡前看書時間介于30~50分鐘的有67人
D. 若n=1000,則可估計本次調查中睡前看書時間介于20~40分鐘的有600人
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知f(x)為定義在R上的偶函數,當x≥0時,有f(x+1)=-f(x),且當x∈[0,1)時,f(x)=log2(x+1),給出下列命題
①f(2014)+f(-2015)=0;
②函數f(x)在定義域上是周期為2的函數;
③直線y=x與函數f(x)的圖象有2個交點;
④函數f(x)的值域為(-1,1).
其中正確的是( )
A. ①② B. ②③
C. ①④ D. ①②③④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線的焦點為F,直線
與x軸的交點為P,與拋物線的交點為Q,且
.
(1)求拋物線的方程;
(2)過F的直線l與拋物線相交于A,D兩點,與圓相交于B,C兩點(A,B兩點相鄰),過A,D兩點分別作拋物線的切線,兩條切線相交于點M,求△ABM與△CDM的面積之積的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設f(x)是定義域為R的周期函數,最小正周期為2,且
f(1+x)=f(1-x),當-1≤x≤0時,f(x)=-x.
(1)判斷f(x)的奇偶性;
(2)試求出函數f(x)在區間[-1,2]上的表達式.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校為了鼓勵學生熱心公益,服務社會,成立了“慈善義工社”.2017年12月,該校“慈善義工社”為學生提供了4次參加公益活動的機會,學生可通過網路平臺報名參加活動.為了解學生實際參加這4次活動的情況,該校隨機抽取100名學生進行調查,數據統計如下表,其中“√”表示參加,“×”表示未參加.
根據表中數據估計,該校4000名學生中約有120名這4次活動均未參加.
(Ⅰ)求的值;
(Ⅱ)從該校4000名學生中任取一人,試估計其2017年12月恰參加了2次學校組織的公益活動的概率;
(Ⅲ)已知學生每次參加公益活動可獲得10個公益積分,任取該校一名學生,記該生2017年12月獲得的公益積分為,求隨機變量
的分布列和數學期望
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義在(0,+∞)上的單調函數f(x),x∈(0,+∞),f[f(x)﹣lnx]=1,則方程f(x)﹣f′(x)=1的解所在區間是 ( )
A. (2,3) B. C.
D. (1,2)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】共享單車因綠色、環保、健康的出行方式,在國內得到迅速推廣.最近,某機構在某地區隨機采訪了10名男士和10名女士,結果男士、女士中分別有7人、6人表示“經常騎共享單車出行”,其他人表示“較少或不選擇騎共享單車出行”.
(1)從這些男士和女士中各抽取一人,求至少有一人“經常騎共享單車出行”的概率;
(2)從這些男士中抽取一人,女士中抽取兩人,記這三人中“經常騎共享單車出行”的人數為,求
的分布列與數學期望.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com