【題目】設f(x)=asin2x+bcos2x(a,b∈R,ab≠0),若f(x)對一切x∈R恒成立,給出以下結論:
①;
②;
③f(x)的單調遞增區間是;
④函數y=f(x)既不是奇函數也不是偶函數;
⑤存在經過點(a,b)的直線與函數f(x)的圖象不相交,其中正確結論為_____
【答案】①②④
【解析】
先轉化f(x)=asin2x+bcos2x,根據f(x)
對一切x∈R恒成立,得到
是f(x)的最大值或最小值,且f(x)的周期為
,
①由相差四分之一個周期,由相鄰最值點和零點間的關系判斷.②利用軸對稱判斷,是否關于
對稱.③根據
是f(x)的最大值或最小值結合單調性判斷.④由f(x)
是奇函數,f(x)
是偶函數,判斷.⑤根據三角函數的定義域和值域判斷.
設f(x)=asin2x+bcos2x,
因為f(x)對一切x∈R恒成立,
所以是f(x)的最大值或最小值.
又因為f(x)的周期為,
①為四分之一個周期,所以
,故正確.
②因為,關于
對稱,所以
,故正確.
③若是f(x)的最大值,則
;f(x)的單調遞減區間,故錯誤.
④由,所以函數不可能轉化為f(x)
或f(x)
的形式,所以函數y=f(x)既不是奇函數也不是偶函數,故正確.
⑤若存在經過點(a,b)的直線與函數f(x)的圖象不相交,則直線與橫軸平行且,不成立,故錯誤.
科目:高中數學 來源: 題型:
【題目】如圖,正方形與梯形
所在的平面互相垂直,
,
,點
在線段
上.
(Ⅰ) 若點為
的中點,求證:
平面
;
(Ⅱ) 求證:平面平面
;
(Ⅲ) 當平面與平面
所成二面角的余弦值為
時,求
的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某地區有小學21所,中學14所,大學7所,現采取分層抽樣的方法從這些學校中抽取6所學校對學生進行視力調查。
(I)求應從小學、中學、大學中分別抽取的學校數目。
(II)若從抽取的6所學校中隨機抽取2所學校做進一步數據分析,
(1)列出所有可能的抽取結果;
(2)求抽取的2所學校均為小學的概率。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“五一”期間,甲乙兩個商場分別開展促銷活動.
(Ⅰ)甲商場的規則是:凡購物滿100元,可抽獎一次,從裝有大小、形狀相同的4個白球、4個黑球的袋中摸出4個球,中獎情況如下表:
摸出的結果 | 獲得獎金(單位:元) |
4個白球或4個黑球 | 200 |
3個白球1個黑球或3個黑球1個白球 | 20 |
2個黑球2個白球 | 10 |
記為抽獎一次獲得的獎金,求
的分布列和期望.
(Ⅱ)乙商場的規則是:凡購物滿100元,可抽獎10次.其中,第次抽獎方法是:從編號為
的袋中(裝有大小、形狀相同的
個白球和
個黑球)摸出
個球,若該次摸出的
個球顏色都相同,則可獲得獎金
元;記第
次獲獎概率
.設各次摸獎的結果互不影響,最終所獲得的總獎金為10次獎金之和.
①求證:;
②若某顧客購買120元的商品,不考慮其它因素,從獲得獎金的期望分析,他應該選擇哪一家商場?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設橢圓的離心率
,拋物線
的焦點恰好是橢圓
的右焦點
.
(1)求橢圓的標準方程;
(2)過點作兩條斜率都存在的直線
,設
與橢圓
交于
兩點,
與橢圓
交于
兩點,若
是
與
的等比中項,求
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,三棱柱中,
平面
,
,
,
,以
,
為鄰邊作平行四邊形
,連接
和
.
(Ⅰ)求證:平面
;
(Ⅱ)求直線與平面
所成角的正弦值;
(Ⅲ)線段上是否存在點
,使平面
與平面
垂直?若存在,求出
的長;若不存在,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com