日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
11.已知點P(2,0)及圓C:x2+y2-6x+4y+4=0.
(1)設過P直線l1與圓C交于M、N兩點,當|MN|=4時,求以MN為直徑的圓Q的方程;
(2)設直線ax-y+1=0與圓C交于A,B兩點,是否存在實數a,使得過點P(2,0)的直線l2垂直平分弦AB?若存在,求出實數a的值;若不存在,請說明理由.

分析 (1)由利用兩點間的距離公式求出圓心C到P的距離,再根據弦長|MN|的一半及半徑,利用勾股定理求出弦心距d,發現|CP|與d相等,所以得到P為MN的中點,所以以MN為直徑的圓的圓心坐標即為P的坐標,半徑為|MN|的一半,根據圓心和半徑寫出圓的方程即可;
(2)把已知直線的方程代入到圓的方程中消去y得到關于x的一元二次方程,因為直線與圓有兩個交點,所以得到△>0,列出關于a的不等式,求出不等式的解集即可得到a的取值范圍,利用反證法證明:假設符合條件的a存在,由直線l2垂直平分弦AB得到圓心必在直線l2上,根據P與C的坐標即可求出l2的斜率,然后根據兩直線垂直時斜率的乘積為-1,即可求出直線ax-y+1=0的斜率,進而求出a的值,經過判斷求出a的值不在求出的范圍中,所以假設錯誤,故這樣的a不存在.

解答 解:(1)由于圓C:x2+y2-6x+4y+4=0的圓心C(3,-2),半徑為3,
|CP|=$\sqrt{5}$,而弦心距d=$\sqrt{5}$,
所以d=|CP|=$\sqrt{5}$,所以P為MN的中點,
所以所求圓的圓心坐標為(2,0),半徑為$\frac{1}{2}$|MN|=2,
故以MN為直徑的圓Q的方程為(x-2)2+y2=4;
(2)把直線ax-y+1=0即y=ax+1.代入圓C的方程,消去y,整理得(a2+1)x2+6(a-1)x+9=0.
由于直線ax-y+1=0交圓C于A,B兩點,
故△=36(a-1)2-36(a2+1)>0,即-2a>0,解得a<0.
則實數a的取值范圍是(-∞,0).
設符合條件的實數a存在,
由于l2垂直平分弦AB,故圓心C(3,-2)必在l2上.
所以l2的斜率kPC=-2,
∴kAB=a=$\frac{1}{2}$,
由于$\frac{1}{2}∉(-∞,0)$,
故不存在實數a,使得過點P(2,0)的直線l2垂直平分弦AB.

點評 此題考查學生掌握直線與圓的位置關系,靈活運用點到直線的距離公式及兩點間的距離公式化簡求值,以及會利用反證法進行證明,是一道綜合題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

1.在長方體ABCD-A1B1C1D1中,底面ABCD是邊長為$\sqrt{2}$的正方形,AA1=3,E是AA1的中點,過C1作C1F⊥平面BDE與平面ABB1A1交于點F,則$\frac{AF}{{A{A_{1}}}}$等于(  )
A.$\frac{4}{7}$B.$\frac{5}{8}$C.$\frac{5}{9}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

2.已知函數f(x)=lnx,g(x)=$\frac{1}{2}{x^2}$-2x,當x>2時k(x-2)<xf(x)+2g'(x)+3恒成立,則整數k最大值為5.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

19.已知函數f(x)=loga(ax-1)(a>0,且a≠1).
(1)求函數f(x)的定義域;
(2若函數f(x)的函數值大于1,求x的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

6.已知直線3x+(3a-3)y=0與直線2x-y-3=0垂直,則a的值為( 。
A.1B.2C.4D.16

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

16.若f(x+1)=2x-1,則f(1)=-1.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

3.證券公司提示:股市有風險,入市需謹慎.小強買的股票A連續4個跌停(一個跌停:比前一天收市價下跌10%),則至少需要幾個漲停,才能不虧損(一個漲停:比前一天收市價上漲10%).(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

20.已知$\frac{sinα-2cosα}{3sinα+5cosα}$=2,則tanα的值為( 。
A.$\frac{12}{5}$B.-$\frac{12}{5}$C.$\frac{5}{12}$D.-$\frac{5}{12}$

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

1.已知向量$\overrightarrow{a}$=(1,3),$\overrightarrow$=(3,t),若$\overrightarrow{a}$∥$\overrightarrow$,則實數t的值為( 。
A.-9B.-1C.1D.9

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 欧美性猛交xxxx乱大交退制版 | 日韩欧美视频在线 | 天堂成人网| 毛片毛片毛片 | 亚洲综合在线播放 | 免费看黄色片 | 欧美综合网 | 成人aaa| 成人国产精品一区二区 | 黄色欧美大片 | 一级黄色在线观看 | 青青国产在线 | 成人在线免费观看网站 | 日本成人精品 | 日韩一区二区在线播放 | 性欧美8khd高清极品 | 欧美日韩大片 | 国产精品成人在线 | 久久99九九 | 色爱综合区 | 成人在线免费看 | 日韩精品黄 | 97超碰免费 | 国产精品天堂 | 欧美日本在线 | 欧美中文字幕 | 国产精品嫩草影院桃色 | xxxxx黄色| 欧美成人精品欧美一级私黄 | 天堂99| 久久黄色影院 | 国产99对白在线播放 | 成人福利网站 | 免费成人深夜夜行网站 | 日本三级大片 | 久久神马 | 国产精品久久久久久久久借妻 | 麻豆一区二区 | 天天干夜夜爽 | 日韩黄网 | 国产精品911 |