【題目】已知函數,且.
(1)求函數的解析式;
(2)若對任意,都有
,求的
取值范圍;
(3)證明函數的圖象在
圖象的下方.
【答案】(1)(2)
(3)見解析
【解析】
試題(1)首先求出函數的定義域,再對
求導,代入
,解方程可得
,即可求得函數
的解析式;
(2)由題意可得 恒成立,即
恒成立,令
,求出
的導數,單調區間,求得最大值,即可得到
的取值范圍;
(3)要證明函數的圖象在
圖象的下方.,即證
恒成立,即證
,即證
,令
求得導數,得到單調性,即可得證.
試題解析:(1)易知函數的定義域 所以
,又
;
(2)若對任意的 ,都有
即 恒成立,即
恒成立
令,則
當 時,
所以
單調遞增;
當 時,
所以
單調遞減;
時,
有最大值
,即
的取值范圍為
(3)要證明函數的圖象在
圖象的下方.,即證
恒成立,即
由(2)可得: ,所以
要證明 ,只要證明
,即證
令 則
當
時,
所以
單調遞增,
即
所以 從而得到
,
所以函數的圖象在
圖象的下方
科目:高中數學 來源: 題型:
【題目】如圖,四邊形中(圖1),
是
的中點,
,
,
將(圖1)沿直線
折起,使二面角
為
(如圖2).
圖1 圖2
(1)求證:平面
;
(2)求異面直線與
所成角的余弦值;
(3)求點到平面
的距離.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知、
分別是橢圓
的左、右焦點,點
是橢圓
上一點,且
.
(1)求橢圓的方程;
(2)設直線與橢圓
相交于
,
兩點,若
,其中
為坐標原點,判斷
到直線
的距離是否為定值?若是,求出該定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】我國古代數學名著《算法統宗》中有如下問題:“遠望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數是上一層燈數的2倍,則塔的頂層共有燈( )
A. 1盞 B. 3盞 C. 5盞 D. 9盞
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線的焦點為F,過拋物線上一點P作拋物線的切線交x軸于點D,交y軸于Q點,當時,.
(1)判斷的形狀,并求拋物線的方程;
(2)若兩點在拋物線上,且滿足,其中點,若拋物線上存在異于
的點H,使得經過
三點的圓和拋物線在點處有相同的切線,求點H的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知等差數列的前n項和為
,
,
,數列
滿足:
,
,
,數列
的前n項和為
(1)求數列的通項公式及前n項和;
(2)求數列的通項公式及前n項和;
(3)記集合,若M的子集個數為16,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題滿分12分)貴廣高速鐵路自貴陽北站起,經黔南州、黔東南、廣西桂林、賀州、廣東肇慶、佛山終至廣州南站. 其中廣東省內有懷集站、廣寧站、肇慶東站、三水南站、佛山西站、廣州南站共6個站. 記者對廣東省內的6個車站隨機抽取3個進行車站服務滿意度調查.
(1)求抽取的車站中含有佛山市內車站(包括三水南站和佛山西站)的概率;
(2)設抽取的車站中含有肇慶市內車站(包括懷集站、廣寧站、肇慶東站)個數為X,求X的分布列及其均值(即數學期望).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設有關于的一元二次方程
.
(Ⅰ)若是從
四個數中任取的一個數,
是從
三個數中任取的一個數,求上述方程有實根的概率.
(Ⅱ)若是從區間
任取的一個數,
是從區間
任取的一個數,求上述方程有實根的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某中學對高三年級進行身高統計,測量隨機抽取的20名學生的身高,其頻率分布直方圖如下(單位:cm)
(1)根據頻率分布直方圖,求出這20名學生身高中位數的估計值和平均數的估計值.
(2)在身高為140—160的學生中任選2個,求至少有一人的身高在150—160之間的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com