【題目】甲、乙兩位同學(xué)玩游戲,對(duì)于給定的實(shí)數(shù),按下列方法操作一次產(chǎn)生一個(gè)新的實(shí)數(shù):由甲、乙同時(shí)各擲一枚均勻的硬幣,如果出現(xiàn)兩個(gè)正面朝上或兩個(gè)反面朝上,則把
乘以2后再減去12,;如果出現(xiàn)一個(gè)正面朝上,一個(gè)反面朝上,則把
除以2后再加上12,這樣就得到一個(gè)新的實(shí)數(shù)
,對(duì)實(shí)數(shù)
仍按上述方法進(jìn)行一次操作,又得到一個(gè)新的實(shí)數(shù)
,當(dāng)
時(shí),甲獲勝,否則乙獲勝,若甲獲勝的概率為
,則
的取值范圍是________
【答案】
【解析】
按要求操作一次產(chǎn)生一個(gè)新的實(shí)數(shù),列舉得到新的實(shí)數(shù)的途徑,列出不等式,根據(jù)所給的甲獲勝的概率為,解出a1的結(jié)果.
a3的結(jié)果有四種,每一個(gè)結(jié)果出現(xiàn)的概率都是,
1.a1→2a1﹣12→2(2a1﹣12)﹣12=4a1﹣36=a3,
2.a1→2a1﹣12→12=a1+6=a3,
3.a1→12→
+12
18=a3,
4.a1→12→2(
12)﹣12=a1+12=a3,
∵a1+18>a1,a1+36>a1,
∴要使甲獲勝的概率為,
即a3>a1的概率為,
∴4a1﹣36>a1,18≤a1,
或4a1﹣36≤a1,18>a1,
解得a1≤12或a1≥24.
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】根據(jù)中國(guó)生態(tài)環(huán)境部公布的2017年、2018年長(zhǎng)江流域水質(zhì)情況監(jiān)測(cè)數(shù)據(jù),得到如下餅圖:
則下列說(shuō)法錯(cuò)誤的是( )
A.2018年的水質(zhì)情況好于2017年的水質(zhì)情況
B.2018年與2017年相比較,Ⅰ、Ⅱ類水質(zhì)的占比明顯增加
C.2018年與2017年相比較,占比減小幅度最大的是Ⅳ類水質(zhì)
D.2018年Ⅰ、Ⅱ類水質(zhì)的占比超過(guò)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若函數(shù)在區(qū)間
上存在零點(diǎn),則實(shí)數(shù)
的取值范圍為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于函數(shù)有下述四個(gè)結(jié)論:①若
,則
;②
的圖象關(guān)于點(diǎn)
對(duì)稱;③函數(shù)
在
上單調(diào)遞增;④
的圖象向右平移
個(gè)單位長(zhǎng)度后所得圖象關(guān)于
軸對(duì)稱.其中所有正確結(jié)論的編號(hào)是( )
A.①②④B.①②C.③④D.②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若數(shù)列的每一項(xiàng)都不等于零,且對(duì)于任意的
,都有
(
為常數(shù)),則稱數(shù)列
為“類等比數(shù)列”;已知數(shù)列
滿足:
,對(duì)于任意的
,都有
;
(1)求證:數(shù)列是“類等比數(shù)列”;
(2)若是單調(diào)遞減數(shù)列,求實(shí)數(shù)
的取值范圍;
(3)若,求數(shù)列
的前
項(xiàng)之積取最大值時(shí)
的值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知橢圓,
為橢圓的左右頂點(diǎn),焦點(diǎn)
到短軸端點(diǎn)的距離為2,且
,
為橢圓
上異于
的兩點(diǎn),直線
的斜率等于直線
斜率的2倍.
(1)求直線與直線
的斜率乘積值;
(2)求證:直線過(guò)定點(diǎn),并求出該定點(diǎn);
(3)求三角形的面積
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知某產(chǎn)品的銷售額與廣告費(fèi)用
之間的關(guān)系如下表:
| 0 | 1 | 2 | 3 | 4 |
| 10 | 15 | 30 | 35 |
若根據(jù)表中的數(shù)據(jù)用最小二乘法求得對(duì)
的回歸直線方程為
,則下列說(shuō)法中錯(cuò)誤的是( )
A.產(chǎn)品的銷售額與廣告費(fèi)用成正相關(guān)
B.該回歸直線過(guò)點(diǎn)
C.當(dāng)廣告費(fèi)用為10萬(wàn)元時(shí),銷售額一定為74萬(wàn)元
D.的值是20
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正項(xiàng)數(shù)列的前n項(xiàng)和為
,對(duì)于任意正整數(shù)m、n及正常數(shù)q,當(dāng)
時(shí),
恒成立,若存在常數(shù)
,使得
為等差數(shù)列,則常數(shù)c的值為______
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4—4:坐標(biāo)系與參數(shù)方程。
已知曲線C:
(t為參數(shù)), C
:
(
為參數(shù))。
(1)化C,C
的方程為普通方程,并說(shuō)明它們分別表示什么曲線;
(2)若C上的點(diǎn)P對(duì)應(yīng)的參數(shù)為
,Q為C
上的動(dòng)點(diǎn),求
中點(diǎn)
到直線
(t為參數(shù))距離的最小值。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com