【題目】已知函數(
).
(1)求證:函數是增函數;
(2)若函數在
上的值域是
(
),求實數
的取值范圍;
(3)若存在,使不等式
成立,求實數
的取值范圍.
科目:高中數學 來源: 題型:
【題目】人類的四種血型與基因類型的對應為:O型的基因類型為ii,A型的基因類型為ai或aa,B型的基因類型為bi或bb,AB型的基因類型為ab,其中a和b是顯性基因,i是隱性基因.一對夫妻的血型一個是A型,一個是B型,請確定他們的子女的血型是0,A,B或AB型的概率,并填寫下表:
父母血型的基因類型組合 | 子女血型的概率 | |||
O | A | B | AB | |
ai×bi | ||||
ai×bb | 0 | 0 | ||
aa×bi | 0 | 0 | ||
aa×bb | 0 | 0 | 0 | 1 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】汽車行業是碳排放量比較大的行業之一,歐盟從2012年開始就對二氧化碳排放量超過
的型汽車進行懲罰,某檢測單位對甲、乙兩類
型品牌汽車各抽取5輛進行二氧化碳排放量檢測,記錄如下(單位:
):
甲 | 80 | 110 | 120 | 140 | 150 |
乙 | 100 | 120 | 100 | 160 |
經測算發現,乙類型品牌汽車二氧化碳排放量的平均值為
.
(Ⅰ)從被檢測的5輛甲類型品牌車中任取2輛,則至少有1輛二氧化碳排放量超過
的概率是多少?
(Ⅱ)求表中,并比較甲、乙兩類
型品牌汽車二氧化碳排放量的穩定性.
,其中,
表示
的平均數,
表示樣本數量,
表示個體,
表示方差)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓
的左焦點
左頂點
.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知,
是橢圓上的兩點,
是橢圓上位于直線
兩側的動點.若
,試問直線
的斜率是否為定值?請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義在上的函數
滿足對于任意實數
,
都有
,且當
時,
,
.
(1)判斷的奇偶性并證明;
(2)判斷的單調性,并求當
時,
的最大值及最小值;
(3)解關于的不等式
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校從學生會宣傳部6名成員(其中男生4人,女生2人)中,任選3人參加某省舉辦的“我看中國改革開放三十年”演講比賽活動.
(1)設所選3人中女生人數為ξ,求ξ的分布列;
(2)求男生甲或女生乙被選中的概率;
(3)設“男生甲被選中”為事件A,“女生乙被選中”為事件B,求P(B)和P(B|A).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知f(x)是R上的奇函數,且當x>0時,f(x)=-x2+2x+2.
(1)求f(x)的解析式;
(2)畫出f(x)的圖像,并指出f(x)的單調區間.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
以平面直角坐標系的原點為極點,軸的正半軸為極軸,取相同的長度單位建立極坐標系,已知直線
的極坐標方程是
,圓
的參數方程為
(
為參數,
).
(1)若直線與圓
有公共點,求實數
的取值范圍;
(2)當時,過點
且與直線
平行的直線
交圓
于
兩點,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】地震、海嘯、洪水、森林大火等自然災害頻繁出現,緊急避險常識越來越引起人們的重視.某校為了了解學生對緊急避險常識的了解情況,從高一年級和高二年級各選取100名同學進行緊急避險常識知識競賽.圖(1)和圖(2)分別是對高一年級和高二年級參加競賽的學生成績按,
分組,得到的頻率分布直方圖.
(Ⅰ)根據成績頻率分布直方圖分別估計參加這次知識競賽的兩個年級學生的平均成績;
(Ⅱ)完成下面列聯表,并回答是否有
的把握認為“兩個年級學生對緊急避險常識的了解有差異”?
成績小于60分人數 | 成績不小于60分人數 | 合計 | |
高一年級 | |||
高二年級 | |||
合計 |
附:
臨界值表:
0.10 | 0.05 | 0.010 | |
2.706 | 3.841 | 6.635 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com