【題目】設(shè)x,y,z∈R,z(x+2y)=m.
(1)若m=1,求的最小值;
(2)若x2+2y2+3z2=m2﹣8,求實(shí)數(shù)m的取值范圍.
【答案】(1)1;(2)(﹣∞,﹣4]∪[4,+∞).
【解析】
(1)由均值不等式及其變形,可得到兩數(shù)的平方和不小于兩數(shù)和平方的一半,對運(yùn)用剛得到的基本不等式的變形性質(zhì),結(jié)合已知進(jìn)行求解即可;
(2)由均值不等式和絕對值不等式得x2+2y2+3z2=(x2+z2)+2(y2+z2)≥2|xz|+4|yz|≥2|xz+2yz|=2|z(x+2y)|=|m|,進(jìn)而得到關(guān)于m的不等式,解出即可.
(1)∵a2+b2≥2ab,
∴2(a2+b2)≥(a+b)2,即a2+b2(a+b)2,
∴x2+4y2z2
(x+2y)2
z2
2|(x+2y)z|=1,
當(dāng)且僅當(dāng)x=2y,x+2y=z時(shí),即x=2yz,等號成立,
∴x2+4y2z2的最小值是1.
(2)∵m2﹣8=x2+2y2+3z2=(x2+z2)+2(y2+z2)≥2|xz|+4|yz|,(當(dāng)且僅當(dāng)|x|=|y|=|z|時(shí)等號成立),
又2|xz|+4|yz|≥2|xz+2yz|=2|z(x+2y)|=|m|,(當(dāng)且僅當(dāng)xz與yz非異號時(shí)等號成立).
∴m2﹣8≥2|m|,即m2﹣2|m|﹣8≥0,
解得|m|≥4,即m≥4或m≤﹣4,
所以m的取值范圍為(﹣∞,﹣4]∪[4,+∞).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的四個(gè)頂點(diǎn)圍成的菱形的面積為
,橢圓的一個(gè)焦點(diǎn)為
.
(1)求橢圓的方程;
(2)若,
為橢圓上的兩個(gè)動點(diǎn),直線
,
的斜率分別為
,
,當(dāng)
時(shí),
的面積是否為定值?若為定值,求出此定值;若不為定值,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“難度系數(shù)”反映試題的難易程度,難度系數(shù)越大,題目得分率越高,難度也就越小.“難度系數(shù)”的計(jì)算公式為,其中,
為難度系數(shù),
為樣本平均失分,
為試卷總分(一般為100分或150分).某校高三年級的李老師命制了某專題共5套測試卷(每套總分150分),用于對該校高三年級480名學(xué)生進(jìn)行每周測試.測試前根據(jù)自己對學(xué)生的了解,預(yù)估了每套試卷的難度系數(shù),如下表所示:
試卷序號 | 1 | 2 | 3 | 4 | 5 |
考前預(yù)估難度系數(shù) | 0.7 | 0.64 | 0.6 | 0.6 | 0.55 |
測試后,隨機(jī)抽取了50名學(xué)生的數(shù)據(jù)進(jìn)行統(tǒng)計(jì),結(jié)果如下:
試卷序號 | 1 | 2 | 3 | 4 | 5 |
實(shí)測平均分 | 102 | 99 | 93 | 93 | 87 |
(1)根據(jù)試卷2的難度系數(shù)估計(jì)這480名學(xué)生第2套試卷的平均分;
(2)從抽樣的50名學(xué)生的5套試卷中隨機(jī)抽取2套試卷,記這2套試卷中平均分超過96分的套數(shù)為,求
的分布列和數(shù)學(xué)期望;
(3)試卷的預(yù)估難度系數(shù)和實(shí)測難度系數(shù)之間會有偏差.設(shè)為第
套試卷的實(shí)測難度系數(shù),并定義統(tǒng)計(jì)量
,若
,則認(rèn)為本專題的5套試卷測試的難度系數(shù)預(yù)估合理,否則認(rèn)為不合理.試檢驗(yàn)本專題的5套試卷對難度系數(shù)的預(yù)估是否合理.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的右焦點(diǎn)為
,右準(zhǔn)線為
.過點(diǎn)
作與坐標(biāo)軸都不垂直的直線與橢圓
交于
,
兩點(diǎn),線段
的中點(diǎn)為
,
為坐標(biāo)原點(diǎn),且直線
與右準(zhǔn)線
交于點(diǎn)
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若,求直線
的方程;
(3)是否存在實(shí)數(shù),使得
恒成立?若存在,求實(shí)數(shù)
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2020年初,一場新冠肺炎疫情突如其來,在黨中央強(qiáng)有力的領(lǐng)導(dǎo)下,全國各地的醫(yī)務(wù)工作者迅速馳援湖北,以大無畏的精神沖在了抗擊疫情的第一線,迅速控制住疫情.但國外疫情嚴(yán)峻,輸入性病例逐漸增多,為了鞏固我國的抗疫成果,保護(hù)國家和人民群眾的生命安全,我國三家生物高科技公司各自組成A、B、C三個(gè)科研團(tuán)隊(duì)進(jìn)行加急疫苗研究,其研究方向分別是滅活疫苗、核酸疫苗和全病毒疫苗,根據(jù)這三家的科技實(shí)力和組成的團(tuán)隊(duì)成員,專家預(yù)測這A、B、C三個(gè)團(tuán)隊(duì)未來六個(gè)月中研究出合格疫苗并用于臨床接種的概率分別為,
,
,且三個(gè)團(tuán)隊(duì)是否研究出合格疫苗相互獨(dú)立.
(1)求六個(gè)月后A,B兩個(gè)團(tuán)隊(duì)恰有一個(gè)研究出合格疫苗并用于臨床接種的概率;
(2)設(shè)六個(gè)月后研究出合格疫苗并用于臨床接種的團(tuán)隊(duì)個(gè)數(shù)為X,求X的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的焦距為4.且過點(diǎn)
.
(1)求橢圓E的方程;
(2)設(shè),
,
,過B點(diǎn)且斜率為
的直線l交橢圓E于另一點(diǎn)M,交x軸于點(diǎn)Q,直線AM與直線
相交于點(diǎn)P.證明:
(O為坐標(biāo)原點(diǎn)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l:和橢圓
:
相交于點(diǎn)
,
(1)當(dāng)直線l過橢圓的左焦點(diǎn)和上頂點(diǎn)時(shí),求直線l的方程
(2)點(diǎn)在
上,若
,求
面積的最大值:
(3)如果原點(diǎn)O到直線l的距離是,證明:
為直角三角形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,某地有一塊半徑為R的扇形AOB公園,其中O為扇形所在圓的圓心,AOB=,OA,OB,
為公園原有道路.為滿足市民觀賞和健身的需要,市政部門擬在
上選取一點(diǎn)M,新建道路OM及與OA平行的道路MN(點(diǎn)N在線段OB上),設(shè)AOM=
.
(1)如何設(shè)計(jì),才能使市民從點(diǎn)O出發(fā)沿道路OM,MN行走至點(diǎn)N所經(jīng)過的路徑最長?請說明理由;
(2)如何設(shè)計(jì),才能使市民從點(diǎn)A出發(fā)沿道路,MN行走至點(diǎn)N所經(jīng)過的路徑最長?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的左、右焦點(diǎn)分別為
,上頂點(diǎn)為
,離心率為
, 在
軸負(fù)半軸上有一點(diǎn)
,且
(1)若過三點(diǎn)的圓 恰好與直線
相切,求橢圓C的方程;
(2)在(1)的條件下,過右焦點(diǎn)作斜率為
的直線
與橢圓C交于
兩點(diǎn),在
軸上是否存在點(diǎn)
,使得以
為鄰邊的平行四邊形是菱形,如果存在,求出
的取值范圍;如果不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com