【題目】已知函數f(x)=log3 ,g(x)=﹣2ax+a+1,h(x)=f(x)+g(x).
(Ⅰ)當a=﹣1時,證明h(x)是奇函數;
(Ⅱ)若關于x的方程f(x)=log3g(x)有兩個不等實數根,求實數a的取值范圍.
【答案】解:(Ⅰ)證明:當a=﹣1時,
f(x)=log3 ,g(x)=2x,
h(x)=log3 +2x,
定義域為(﹣∞,﹣1)∪(1,+∞),
又∵h(﹣x)=log3 ﹣2x,
∴h(x)+h(﹣x)=log3 +log3
+2x﹣2x=0,
故h(x)為奇函數;
(Ⅱ)∵f(x)=log3g(x),
∴ =﹣2ax+a+1,且x∈(﹣∞,﹣1)∪(1,+∞),
∴(1﹣2x)a= ﹣1=﹣
,
顯然a≠0,
∴ =(x+1)(x﹣
),
利用圖象可知,當 >1時,
方程 =(x+1)(x﹣
)在(﹣∞,﹣1)∪(1,+∞)內有兩個不等實數根,
解得0<a<1.
【解析】(Ⅰ)當a=﹣1時,化簡h(x)=log3 +2x,并求其定義域為(﹣∞,﹣1)∪(1,+∞),再判斷h(x)+h(﹣x)=0即可;(Ⅱ)化簡可得
=﹣2ax+a+1,且x∈(﹣∞,﹣1)∪(1,+∞),從而可得
=(x+1)(x﹣
),從而解得.
【考點精析】通過靈活運用函數的奇偶性和函數的零點,掌握偶函數的圖象關于y軸對稱;奇函數的圖象關于原點對稱;函數的零點就是方程的實數根,亦即函數的圖象與軸交點的橫坐標.即:方程有實數根,函數的圖象與坐標軸有交點,函數有零點即可以解答此題.
科目:高中數學 來源: 題型:
【題目】數列{an}的前n項和為Sn , 若對于任意的正整數n都有Sn=2an﹣3n.
(1)設bn=an+3,求證:數列{bn}是等比數列,并求出{an}的通項公式;
(2)求數列{nan}的前n項和.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知集合A={x|x2﹣5x﹣6<0},集合B={x|6x2﹣5x+1≥0},集合C={x|(x﹣m)(x﹣m﹣9)<0}
(1)求A∩B;
(2)若AC,求實數 m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的焦距為
,設右焦點為
,過原點
的直線
與橢圓
交于
兩點,線段
的中點為
,線段
的中點為
,且
.
(1)求弦的長;
(2)當直線的斜率
,且直線
時,
交橢圓于
,若點
在第一象限,求證:直線
與
軸圍成一個等腰三角形.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某高校學生社團為了解“大數據時代”下大學生就業情況的滿意度,對20名學生進行問卷計分調查(滿分100分),得到如圖所示的莖葉圖:
(1)計算男生打分的平均分,觀察莖葉圖,評價男女生打分的分散程度;
(2)從打分在80分以上的同學隨機抽3人,求被抽到的女生人數的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓O的方程為x2+y2=1,直線l1過點A(3,0),且與圓O相切.
(1)求直線l1的方程;
(2)設圓O與x軸相交于P,Q兩點,M是圓O上異于P,Q的任意一點,過點A且與x軸垂直的直線為l2 , 直線PM交直線l2于點P′,直線QM交直線l2于點Q′.求證:以P′Q′為直徑的圓C總經過定點,并求出定點坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知p:直線y=(2m+1)x+m﹣2的圖象不經過第四象限,q:方程x2+ =1表示焦點在x軸上的橢圓,若(¬p)∨q為假命題,求實數m的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com