【題目】某中學對高二甲、乙兩個同類班級進行“加強‘語文閱讀理解’訓練對提高‘數學應用題’得分率有幫助”的試驗,其中甲班為試驗班(加強語文閱讀理解訓練),乙班為對比班(常規教學,無額外訓練),在試驗前的測試中,甲、乙兩班學生在數學應用題上的得分率基本一致,試驗結束后,統計幾次數學應用題測試的平均成績(均取整數)如下表所示:
60分及以下 | 61~70分 | 71~80分 | 81~90分 | 91~100分 | |
甲班(人數) | 3 | 6 | 12 | 15 | 9 |
乙班(人數) | 4 | 7 | 16 | 12 | 6 |
現規定平均成績在80分以上(不含80分)的為優秀.
(1)由以上統計數據填寫列聯表,并判斷是否有
的把握認為“加強‘語文閱讀理解’訓練對提高‘數學應用題’得分率”有幫助;
(2)對甲乙兩班60分及以下的同學進行定期輔導,一個月后從中抽取3人課堂檢測,表示抽取到的甲班學生人數,求
及至少抽到甲班1名同學的概率.
科目:高中數學 來源: 題型:
【題目】對于函數和
,若存在區間
,使
在區間
上恒成立,則稱區間
是函數
和
的“公共鄰域”.設函數
的反函數為
,函數
的圖像與函數
的圖像關于點
對稱.
(1)求函數和
的解析式;
(2)若,求函數
的定義域;
(3)是否存在實數,使得區間
是
和
的“公共鄰域”,若存在,求出
的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數.
(Ⅰ)求函數f(x)的定義域,判斷并證明函數f(x)的奇偶性;
(Ⅱ)是否存在這樣的實數k,使f(k-x2)+f(2k-x4)≥0對一切恒成立,若存在,試求出k的取值集合;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】新個稅法于2019年1月1日進行實施.為了調查國企員工對新個稅法的滿意程度,研究人員在地各個國企中隨機抽取了1000名員工進行調查,并將滿意程度以分數的形式統計成如下的頻率分布直方圖,其中
.
(1)求的值并估計被調查的員工的滿意程度的中位數;(計算結果保留兩位小數)
(2)若按照分層抽樣從,
中隨機抽取8人,再從這8人中隨機抽取2人,求至少有1人的分數在
的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】分形理論是當今世界十分風靡和活躍的新理論、新學科。其中,把部分與整體以某種方式相似的形體稱為分形。分形是一種具有自相似特性的現象,圖象或者物理過程。標準的自相似分形是數學上的抽象,迭代生成無限精細的結構。也就是說,在分形中,每一組成部分都在特征上和整體相似,只僅僅是變小了一些而已,謝爾賓斯基三角形就是一種典型的分形,是由波蘭數學家謝爾賓斯基在1915年提出的,按照如下規律依次在一個黑色三角形內去掉小三角形則當時,該黑色三角形內共去掉( )個小三角形
A. 81 B. 121 C. 364 D. 1093
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】近年來,雙十一購物狂歡節(簡稱“雙11”)活動已成為中國電子商務行業年度盛事,某網絡商家為制定2018年“雙11”活動營銷策略,調查了2017年“雙11”活動期間每位網購客戶用于網購時間(單位:小時),發現
近似服從正態分布
.
(1)求的估計值;
(2)該商家隨機抽取參與2017年“雙11”活動的10000名網購客戶,這10000名客戶在2017年“雙11”活動期間,用于網購時間屬于區間
的客戶數為
.該商家計劃在2018年“雙11”活動前對這
名客戶發送廣告,所發廣告的費用為每位客戶0.05元.
(i)求該商家所發廣告總費用的平均估計值;
(ii)求使取最大值時的整數
的值.
附:若隨機變量服從正態分布
,則
,
,
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com