【題目】已知函數滿足
(
為常數),且
=3.
(1)求實數的值,并求出函數
的解析式;
(2)當時,討論函數
的單調性,并用定義證明你的結論.
科目:高中數學 來源: 題型:
【題目】定義在上的函數
,若已知其在
內只取到一個最大值和一個最小值,且當
時函數取得最大值為
;當
,函數取得最小值為
.
(1)求出此函數的解析式;
(2)是否存在實數,滿足不等式
?若存在,求出
的范圍(或值),若不存在,請說明理由;
(3)若將函數的圖像保持橫坐標不變縱坐標變為原來的
得到函數
,再將函數
的圖像向左平移
個單位得到函數
,已知函數
的最大值為
,求滿足條件的
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“活水圍網”養魚技術具有養殖密度高、經濟效益好的特點.研究表明:“活水圍網”養魚時,某種魚在一定的條件下,每尾魚的平均生長速度(單位:千克/年)是養殖密度
(單位:尾/立方米)的函數.當
時,
的值為2千克/年;當
時,
是
的一次函數;當
時,因缺氧等原因,
的值為0千克/年.
(1)當時,求
關于
的函數表達式.
(2)當養殖密度為多少時,魚的年生長量(單位:千克/立方米)可以達到最大?并求出最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某種計算機病毒是通過電子郵件進行傳播的,下表是某公司前5天監測到的數據:
第 | 1 | 2 | 3 | 4 | 5 |
被感染的計算機數量 | 10 | 20 | 39 | 81 | 160 |
則下列函數模型中,能較好地反映計算機在第天被感染的數量
與
之間的關系的是
A. B.
C. D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數定義在
上且滿足下列兩個條件:
①對任意都有
;
②當時,有
,
(1)求,并證明函數
在
上是奇函數;
(2)驗證函數是否滿足這些條件;
(3)若,試求函數
的零點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某中學對高二甲、乙兩個同類班級進行“加強‘語文閱讀理解’訓練對提高‘數學應用題’得分率有幫助”的試驗,其中甲班為試驗班(加強語文閱讀理解訓練),乙班為對比班(常規教學,無額外訓練),在試驗前的測試中,甲、乙兩班學生在數學應用題上的得分率基本一致,試驗結束后,統計幾次數學應用題測試的平均成績(均取整數)如下表所示:
60分及以下 | 61~70分 | 71~80分 | 81~90分 | 91~100分 | |
甲班(人數) | 3 | 6 | 12 | 15 | 9 |
乙班(人數) | 4 | 7 | 16 | 12 | 6 |
現規定平均成績在80分以上(不含80分)的為優秀.
(1)由以上統計數據填寫列聯表,并判斷是否有
的把握認為“加強‘語文閱讀理解’訓練對提高‘數學應用題’得分率”有幫助;
(2)對甲乙兩班60分及以下的同學進行定期輔導,一個月后從中抽取3人課堂檢測,表示抽取到的甲班學生人數,求
及至少抽到甲班1名同學的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知矩形ABCD所在平面垂直于直角梯形ABPE所在平面于直線AB,且ABBP
2,AD=AE=1,AE⊥AB,且AE∥BP.
(1)求平面PCD與平面ABPE所成的二面角的余弦值;
(2)線段PD上是否存在一點N,使得直線BN與平面PCD所成角的正弦值等于?若存在,試確定點N的位置;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,直線
的參數方程為
(
為參數).以坐標原點為極點,
軸的非負半軸為極軸且取相同的單位長度建立極坐標系,圓
的極坐標方程為
.
(1)求直線的普通方程與圓
的直角坐標方程;
(2)設動點在圓
上,動線段
的中點
的軌跡為
,
與直線
交點為
,且直角坐標系中,
點的橫坐標大于
點的橫坐標,求點
的直角坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com