分析 (Ⅰ)根據函數單調性的定義證明函數的單調性即可;(Ⅱ)根據函數的單調性求出函數的最大值和最小值即可.
解答 解:(Ⅰ)函數f(x)在(1,+∞)上是減函數,證明如下:
設1<x1<x2,則x2-x1>0,x1-1>0,x2-1>0,
∴f(x1)-f(x2)=$\frac{6{(x}_{2}{-x}_{1})}{{(x}_{1}-1){(x}_{2}-1)}$>0,
∴f(x1)>f(x2),
∴f(x)在(1,+∞)遞減;
(Ⅱ)由(Ⅰ)知函數f(x)在[2,4]上是減函數,
∴f(x)min=f(4)=2,f(x)max=f(2)=6.
點評 本題考查了通過定義證明函數的單調性以及求函數的最大值和最小值問題,是一道基礎題.
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 30° | B. | 45° | C. | 60° | D. | 120° |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (-∞,0)∪(4,+∞) | B. | (0,4) | C. | (-∞,2)∪(4,+∞) | D. | (2,4) |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com