已知函數(shù),
是
的一個(gè)極值點(diǎn).
(1)求的單調(diào)遞增區(qū)間;
(2)若當(dāng)時(shí),
恒成立,求實(shí)數(shù)
的取值范圍.
(1) 的單調(diào)遞增區(qū)間為
,
(2)
解析試題分析:解:(Ⅰ). ∵
是
的一個(gè)極值點(diǎn),
∴是方程
的一個(gè)根,解得
.
令,則
,解得
或
.
∴函數(shù)的單調(diào)遞增區(qū)間為
,
.
(Ⅱ)∵當(dāng)時(shí)
,
時(shí)
,
∴在(1,2)上單調(diào)遞減,
在(2,3)上單調(diào)遞增.
∴是
在區(qū)間[1,3]上的最小值,且
.
若當(dāng)時(shí),要使
恒成立,只需
,
即,解得
.
考點(diǎn):導(dǎo)數(shù)的運(yùn)用
點(diǎn)評:主要是考查了導(dǎo)數(shù)在研究函數(shù)中的運(yùn)用,利用導(dǎo)數(shù)的符號判定函數(shù)的單調(diào)性,以及運(yùn)用極值的概念來求解析式,屬于基礎(chǔ)題。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)當(dāng)時(shí),求
的單調(diào)區(qū)間,如果函數(shù)
僅有兩個(gè)零點(diǎn),求實(shí)數(shù)
的取值范圍;
(2)當(dāng)時(shí),試比較
與1的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)定義在
上,對于任意的
,有
,且當(dāng)
時(shí),
.
(1)驗(yàn)證函數(shù)是否滿足這些條件;
(2)若,且
,求
的值.
(3)若,試解關(guān)于
的方程
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù).
(1)求它的定義域,值域;(2)判定它的奇偶性和周期性;(3)判定它的單調(diào)區(qū)間及每一區(qū)間上的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
定義在R上的函數(shù)f(x)是最小正周期為2的奇函數(shù), 且當(dāng)x∈(0, 1)時(shí), f (x)=.
(1)求f (x)在[-1, 1]上的解析式;
(2)證明f (x)在(—1, 0)上時(shí)減函數(shù);
(3)當(dāng)λ取何值時(shí), 不等式f (x)>λ在R上有解?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)
(Ⅰ) 當(dāng)時(shí),求函數(shù)
的極值;
(Ⅱ)當(dāng)時(shí),討論函數(shù)
的單調(diào)性.
(Ⅲ)若對任意及任意
,恒有
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
)設(shè)為奇函數(shù),
為常數(shù).
(1)求的值;
(2)判斷在區(qū)間(1,+∞)內(nèi)的單調(diào)性,并證明你的判斷正確;
(3)若對于區(qū)間 [3,4]上的每一個(gè)的值,不等式
>
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(Ⅰ)若函數(shù)無零點(diǎn),求實(shí)數(shù)
的取值范圍;
(Ⅱ)若函數(shù)在
有且僅有一個(gè)零點(diǎn),求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com