【題目】命題 :關于
的不等式
對一切
恒成立,命題
:指數函數
是增函數,若
或
為真、
且
為假,求實數
的取值范圍.
【答案】①對于命題p:關于x的不等式 對于一切x∈R恒成立,∴
,解得-2<a<2.
②對于命題q:函數 是增函數,∴3-2a>1,解得a<1.
當p為真,且q為假時, ,解得1≤a<2.
當p為假,且q為真時, ,解得
,
綜上實數a的取值范圍
故a的取值范圍是[1,2).
【解析】根據題意結合二次函數的性質求出命題p中的滿足題意的a的取值范圍,即可得到使命題p為假命題的a的取值范圍。再根據指數函數的單調性可以求出a的取值范圍,由題意可得到命題q為真命題的a取值范圍,然后借助復合命題的真假利用交集的運算即可求解。
【考點精析】關于本題考查的復合命題的真假和二次函數的性質,需要了解“或”、 “且”、 “非”的真值判斷:“非p”形式復合命題的真假與F的真假相反;“p且q”形式復合命題當P與q同為真時為真,其他情況時為假;“p或q”形式復合命題當p與q同為假時為假,其他情況時為真;增減性:當a>0時,對稱軸左邊,y隨x增大而減小;對稱軸右邊,y隨x增大而增大;當a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小才能得出正確答案.
科目:高中數學 來源: 題型:
【題目】已知不等式|x+3|﹣2x﹣1<0的解集為(x0 , +∞)
(Ⅰ)求x0的值;
(Ⅱ)若函數f(x)=|x﹣m|+|x+ |﹣x0(m>0)有零點,求實數m的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】美索不達米亞平原是人類文明的發祥地之一.美索不達米亞人善于計算,他們創造了優良的計數系統,其中開平方算法是最具有代表性的.程序框圖如圖所示,若輸入a,n,ξ的值分別為8,2,0.5,(每次運算都精確到小數點后兩位)則輸出結果為( )
A.2.81
B.2.82
C.2.83
D.2.84
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】等差數列{an}的前n項和為Sn , 數列{bn}是等比數列,滿足a1=3,b1=1,b2+S2=10,a5﹣2b2=a3 .
(1)求數列{an}和{bn}的通項公式;
(2)令cn=anbn , 設數列{cn}的前n項和為Tn , 求Tn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知各項均為正數的數列滿足
, 且
,其中
.
(1) 求數列的通項公式;
(2) 設數列{bn}滿足 bn=,是否存在正整數
,使得b1,bm,bn成等比數列?若存在,求出所有的
的值;若不存在,請說明理由.
(3) 令,記數列{cn}的前
項和為
,其中
,證明:
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校后勤處為跟蹤調查該校餐廳的當月的服務質量,兌現獎懲,從就餐的學生中隨機抽出100位學生對餐廳服務質量打分(5分制),得到如下柱狀圖:
(1)從樣本中任意選取2名學生,求恰好有一名學生的打分不低于4分的概率;
(2)若以這100人打分的頻率作為概率,在該校隨機選取2名學生進行打分(學生打分之間相互獨立)記 表示兩人打分之和,求
的分布列和
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(選修4﹣4:坐標系與參數方程):
在直角坐標系xOy中,以原點O為極點,x軸的正半軸為極軸建立極坐標系,已知射線θ= 與曲線
(t為參數)相交于A,B來兩點,則線段AB的中點的直角坐標為 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,已知直線l的參數方程為 (t為參數),以坐標原點為極點,x軸的正半軸為極軸,建立極坐標系,曲線C的極坐標方程為:ρ2﹣3ρ﹣4=0(ρ≥0).
(1)寫出直線l的普通方程與曲線C的直角坐標系方程;
(2)設直線l與曲線C相交于A,B兩點,求∠AOB的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,在正四棱柱 中,
,
分別為底面
、底面
的中心,
,
,
為
的中點,
在
上,且
.
(1)以 為原點,分別以
,
所在直線為
x 軸、
y 軸、
z 軸建立空間直角坐標系,求圖中各點的坐標.
(2)以 D 為原點,分別以
, DC,DD1所在直線為
軸、
軸、
軸建立空間直角坐標系,求圖中各點的坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com