分析 $\underset{lim}{x→∞}$($\frac{{x}^{2}}{(x-a)(x+b)}$)x=$\underset{lim}{x→∞}{e}^{ln(\frac{{x}^{2}}{(x-a)(x+b)})^{x}}$=${e}^{\underset{lim}{x→∞}xln[\frac{{x}^{2}}{(x-a)(x+b)}-1+1]}$,根據x→0時,x~ln(x+1),可得$\underset{lim}{x→∞}$($\frac{{x}^{2}}{(x-a)(x+b)}$)x=${e}^{\underset{lim}{x→∞}x[\frac{{x}^{2}}{(x-a)(x+b)}-1]}$=a-b,即可得出.
解答 解:$\underset{lim}{x→∞}$($\frac{{x}^{2}}{(x-a)(x+b)}$)x=$\underset{lim}{x→∞}{e}^{ln(\frac{{x}^{2}}{(x-a)(x+b)})^{x}}$=${e}^{\underset{lim}{x→∞}xln[\frac{{x}^{2}}{(x-a)(x+b)}-1+1]}$,
∵x→0時,x~ln(x+1),
∴$\underset{lim}{x→∞}$($\frac{{x}^{2}}{(x-a)(x+b)}$)x=${e}^{\underset{lim}{x→∞}x[\frac{{x}^{2}}{(x-a)(x+b)}-1]}$,
∵$\underset{lim}{x→∞}$$x[\frac{{x}^{2}}{(x-a)(x+b)}-1]$=$\underset{lim}{x→∞}$$\frac{x(ax-bx+ab)}{(x-a)(x+b)}$=$\underset{lim}{x→∞}$$\frac{(a-b)+\frac{ab}{{x}^{2}}}{1+\frac{b-a}{x}+\frac{-ab}{{x}^{2}}}$=a-b.
∴$\underset{lim}{x→∞}$($\frac{{x}^{2}}{(x-a)(x+b)}$)x=ea-b.
點評 本題考查了極限的運算性質,考查了推理能力與計算能力,屬于中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 3 | B. | lg12 | C. | lg20 | D. | 4lg2 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com