如圖,四棱錐P—ABCD中,為邊長為2的正三角形,底面ABCD為菱形,且平面PAB⊥平面ABCD,
,E為PD點上一點,滿足
(1)證明:平面ACE平面ABCD;
(2)求直線PD與平面ACE所成角正弦值的大小.
科目:高中數學 來源: 題型:解答題
如圖,在中,
,
,點
在邊
上,設
,過點
作
交
于
,作
交
于
。沿
將
翻折成
使平面
平面
;沿
將
翻折成
使平面
平面
.
(1)求證:平面
;
(2)是否存在正實數,使得二面角
的大小為
?若存在,求出
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖所示,在四棱錐P-ABCD中,底面ABCD為矩形,PA⊥平面ABCD,點E在線段PC上,PC⊥平面BDE.
(1) 證明:BD⊥平面PAC;
(2) 若PA=1,AD=2,求二面角B-PC-A的正切值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)如圖,三棱柱ABC-A1B1C1中,CA=CB,AB="A" A1,∠BA A1=60°.
(Ⅰ)證明AB⊥A1C;
(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB,求直線A1C 與平面BB1C1C所成角的正弦值。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,在三棱錐P-ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D、E分別為AB、AC中點.
(Ⅰ)求證:DE∥平面PBC;
(Ⅱ)求證:AB⊥PE;
(Ⅲ)求二面角A-PB-E的大小.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知平行四邊形ABCD中,AB=6,AD=10,BD=8,E是線段AD的中點.沿BD將△BCD翻折到△,使得平面
⊥平面ABD.
(Ⅰ)求證:平面ABD;
(Ⅱ)求直線與平面
所成角的正弦值;
(Ⅲ)求二面角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,在三棱柱中,
,頂點
在底面
上的射影恰為點
,且
.
(Ⅰ)證明:平面平面
;
(Ⅱ)求棱與
所成的角的大小;
(Ⅲ)若點為
的中點,并求出二面角
的平面角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:單選題
已知點A(-1,2),B(2,-2),C(0,3),若點M(a,b)是線段AB上的一點(a≠0),則直線CM的斜率的取值
范圍是( )
[,1] B.[
,0)∪(0,1] C.[-1,
] D.(-∞,
]∪[1,+∞)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com