某工廠某種產品的年固定成本為250萬元,每生產千件,需另投入成本為
,當年產量不足80千件時,
(萬元).當年產量不小于80千件時,
(萬元).每件商品售價為0.05萬元.通過市場分析,該廠生產的商品能全部售完.
(1)寫出年利潤(萬元)關于年產量
(千件)的函數解析式;
(2)年產量為多少千件時,該廠在這一商品的生產中所獲利潤最大?
(1)
(2)當產量為100千件時,該廠在這一商品中所獲利潤最大,最大利潤為1000萬元
解析試題分析:(1)根據年利潤=銷售額-投入的總成本-固定成本,分0<x<80和當x≥80兩種情況得到L與x的分段函數關系式;(2)當0<x<80時根據二次函數求最大值的方法來求L的最大值,當x≥80時,利用基本不等式來求L的最大值,最后綜合即可.
試題解析:(1)因為每件商品售價為0.05萬元,則千件商品銷售額為0.05×1000
萬元,依題意得:
當時,
. 2分
當時,
=. 4分
所以 6分
(2)當時,
此時,當時,
取得最大值
萬元. 8分
當時,
當時,即
時
取得最大值1000萬元. 11分
所以,當產量為100千件時,該廠在這一商品中所獲利潤最大,最大利潤為1000萬元. 12分
考點:1.分段函數的值域的求法;2.二次函數的最值求法;3.函數模型的應用
科目:高中數學 來源: 題型:解答題
某單位擬建一個扇環面形狀的花壇(如圖所示),該扇環面是由以點為圓心的兩個同心圓弧和延長后通過點
的兩條直線段圍成.按設計要求扇環面的周長為30米,其中大圓弧所在圓的半徑為10米.設小圓弧所在圓的半徑為
米,圓心角為
(弧度).
(1)求關于
的函數關系式;
(2)已知在花壇的邊緣(實線部分)進行裝飾時,直線部分的裝飾費用為4元/米,弧線部分的裝飾費用為9元/米.設花壇的面積與裝飾總費用的比為,求
關于
的函數關系式,并求出
為何值時,
取得最大值?
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
經市場調查,某種商品在過去50天的銷售量和價格均為銷售時間t(天)的函數,且銷售量近似地滿足f(t)=-2t+200(1≤t≤50,t∈N).前30天價格為g(t)=t+30(1≤t≤30,t∈N),后20天價格為g(t)=45(31≤t≤50,t∈N).
(1)寫出該種商品的日銷售額S與時間t的函數關系;
(2)求日銷售額S的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
對于函數,若存在實數對(
),使得等式
對定義域中的每一個
都成立,則稱函數
是“(
)型函數”.
(Ⅰ)判斷函數是否為 “(
)型函數”,并說明理由;
(Ⅱ)若函數是“(
)型函數”,求出滿足條件的一組實數對
;,
(Ⅲ)已知函數是“(
)型函數”,對應的實數對
為
.當
時,
,若當
時,都有
,試求
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com