【題目】在直角坐標系 中,曲線
的參數方程為
(
為參數),以坐標原點為極點,
軸正半軸為極軸建立極坐標系,直線
的極坐標方程為
.
(1)求直線和曲線
的普通方程;
(2)已知點,且直線
和曲線
交于
兩點,求
的值
科目:高中數學 來源: 題型:
【題目】若函數是定義在
上的奇函數,且當
時,
.
(Ⅰ)若,求函數
的解析式;
(Ⅱ)若,方程
至少有兩個不等的解,求
的取值集合;
(Ⅲ)若函數為
上的單調減函數,
①求的取值范圍;
②若不等式成立,求實數
的取值集合.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】市實施全域旅游,將鄉村旅游公路建設與特色田園鄉村發展結合,精心打造全長365公里的“1號公路”,對內串聯區域內主要景區景點和自然村,對外通達周邊縣(市),以路引景、為景串線,形成一個“大環小圈、內連外引”的路網體系.如今的“1號公路”,不僅成為該市旅游業的“顏值擔當”,更成為推動鄉村振興的“實力擔當”,農村居住環境日益改善,新農村別墅隨處可見.圖①是一棟新農村別墅,它由上部屋頂和下部主體兩部分組成.如圖②,屋頂由四坡屋面構成,其中前后兩坡屋面
和
是全等的等腰梯形,左右兩坡屋面
和
是全等的三角形.點
在平面
和
上的射影分別為
(即:
平面
,垂足為
;
,垂足為
).已知
,梯形
的面積是
面積的2.2倍.
.
(1)當時,求屋頂面積的大小;
(2)求屋頂面積關于
的函數關系式;
(3)已知上部屋頂造價與屋頂面積成正比,比例系數為(
為正的常數),下部主體造價與其高度成正比,比例系數為
.現欲造一棟上、下總高度為
的別墅,試問:當
為何值時,總造價最低?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數(
),
.
(1)若的圖象在
處的切線恰好也是
圖象的切線.
①求實數的值;
②若方程在區間
內有唯一實數解,求實數
的取值范圍.
(2)當時,求證:對于區間
上的任意兩個不相等的實數
,
,都有
成立.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=log4(4x+1)+kx與g(x)=log4(a2x﹣a),其中f(x)是偶函數.
(1)求實數k的值;
(2)求函數g(x)的定義域;
(3)若函數f(x)與g(x)的圖象有且只有一個公共點,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓中心在原點,焦點在坐標軸上,直線
與橢圓
在第一象限內的交點是
,點
在
軸上的射影恰好是橢圓
的右焦點
,橢圓
另一個焦點是
,且
.
(1)求橢圓的方程;
(2)直線過點
,且與橢圓
交于
兩點,求
的內切圓面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知下列命題:
①在線性回歸模型中,相關指數越接近于1,表示回歸效果越好;
②兩個變量相關性越強,則相關系數r就越接近于1;
③在回歸直線方程中,當解釋變量
每增加一個單位時,預報變量
平均減少0.5個單位;
④兩個模型中殘差平方和越小的模型擬合的效果越好.
⑤回歸直線恒過樣本點的中心
,且至少過一個樣本點;
⑥若的觀測值滿足
≥6.635,我們有99%的把握認為吸煙與患肺病有關系,那么在100個吸煙的人中必有99人患有肺病;
⑦從統計量中得知有95%的把握認為吸煙與患肺病有關系,是指有5%的可能性使得推斷出現錯誤. 其中正確命題的序號是__________.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com