(本題滿分12分)
已知函數(shù)在點(diǎn)
處的切線方程為
.
⑴求函數(shù)的解析式;
⑵若對于區(qū)間上任意兩個自變量的值
都有
,求實數(shù)
的最小值;
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
設(shè)函數(shù),曲線
在點(diǎn)
處的切線方程
.
(1)求的解析式,并判斷函數(shù)
的圖像是否為中心對稱圖形?若是,請求其對稱中心;否則說明理由。
(2)證明:曲線上任一點(diǎn)的切線與直線
和直線
所圍三角形的面積為定值,并求出此定值.
(3) 將函數(shù)的圖象向左平移一個單位后與拋物線
(
為非0常數(shù))的圖象有幾個交點(diǎn)?(說明理由)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
設(shè)函數(shù).
(1)求函數(shù)的單調(diào)增區(qū)間;
(2)若不等式在
恒成立,求實數(shù)m的取值范圍.
(3)若對任意的,總存在
,使不等式
成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分13分)設(shè),其中
為正實數(shù)。
(1)當(dāng)時,求
的極值點(diǎn);
(2)若為R上的單調(diào)函數(shù),求
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知函數(shù)其中
(1)、若的單調(diào)增區(qū)間是(0.1),求m的值
(2)、當(dāng)時,函數(shù)
的圖像上任意一點(diǎn)的切線斜率恒大于3m,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù).
(1)若對定義域內(nèi)任意,都有
成立,求實數(shù)
的值;
(2)若函數(shù)在定義域上是單調(diào)函數(shù),求
的范圍;
(3)若,證明對任意正整數(shù)
,不等式
都成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)已知函數(shù) (
R).
(1)若,求函數(shù)
的極值;
(2)是否存在實數(shù)使得函數(shù)
在區(qū)間
上有兩個零點(diǎn),若存在,求出
的取值范圍;若不存在,說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)。
(1)若不等式對任意的實數(shù)
恒成立,求實數(shù)
的取值范圍;
(2)設(shè),且
在
上單調(diào)遞增,求實數(shù)
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
若函數(shù)為奇函數(shù),當(dāng)
時,
(如圖).
(Ⅰ)求函數(shù)的表達(dá)式,并補(bǔ)齊函數(shù)
的圖象;
(Ⅱ)用定義證明:函數(shù)在區(qū)間
上單調(diào)遞增.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com