【題目】已知函數.
(1)求的單調區間;
(2)求的最大值和最小值.
【答案】(1)見解析;(2)最大值為6,最小值為.
【解析】
(1)求出原函數的導函數,分別利用導函數大于0和小于0,結合已知函數定義域求得原函數的單調區間;
(2)求出函數在[﹣2,1]兩端點的值,再求出函數在該區間上的最大值得答案.
(1) f′(x)=3x2+4x+1=3(x+)(x+1).由f′(x)>0,得x<-1或x>-
;
由f′(x)<0,得-1<x<-.因此,函數f(x)在[-
,1]上的單調遞增區間為[-
,-1],[-
,1],單調遞減區間為[-1,-
].
(2)f(x)在x=-1處取得極大值為f(-1)=2;
f(x)在x=-處取得極小值為f(-
)=
.
又∵f(-)=
,f(1)=6,且
>
,
∴f(x)在[-,1]上的最大值為f(1)=6,最小值為f
.
科目:高中數學 來源: 題型:
【題目】f(x)是定義在(0,+∞)上的單調增函數,滿足f(xy)=f(x)+f(y),f(3)=1,當f(x)+f(x-8)≤2時,x的取值范圍是( )
A.(8,+∞)B.(8,9]C.[8,9]D.(0,8)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】類比平面內正三角形的“三邊相等,三內角相等”的性質,可推出正四面體的下列性質,你認為比較恰當的是( )
①各棱長相等,同一頂點上的任兩條棱的夾角都相等;
②各個面都是全等的正三角形,相鄰兩個面所成的二面角都相等;
③各面都是面積相等的三角形,同一頂點上的任兩條棱的夾角都相等.
A. ①B. ②C. ①②③D. ③
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知向量a=(3sinα,cosα),b=(2sinα,5sinα-4cosα),α∈,且a⊥b.
(1)求tanα的值;
(2)求cos的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓上一動點
,過點
作
軸,垂足為
點,
中點為
.
(1)當在圓
上運動時,求點
的軌跡
的方程;
(Ⅱ)過點的直線
與
交于
兩點,當
時,求線段
的垂直平分線方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了估計某校某次數學考試的情況,現從該校參加考試的600名學生中隨機抽出60名學生,其數學成績(百分制)均在內,將這些成績分成六組
…
,得到如圖所示的部分頻率分布直方圖.
(1)求抽出的60名學生中數學成績在內的人數;
(2)若規定成績不小于85分為優秀,則根據頻率分布直方圖,估計該校參加考試的學生數學成績為優秀的人數;
(3)試估計抽出的60名學生的數學成績的中位數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】填空:
(1)如果,且
,則
是第________象限角;
(2)如果,且
,則
是第________象限角;
(3)如果,且
,則
是第________象限角;
(4)如果,且
,則
是第________象限角.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,已知直線
:
(
為參數).以坐標原點
為極點,
軸的正半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(1)求曲線的直角坐標方程;
(2)設點的直角坐標為
,直線
與曲線
的交點為
,求
的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com