分析 關系式的倒數,得到新數列是等差數列,然后求解通項公式,求解即可.
解答 解:∵數列{an}滿足a1=2,滿足:${a_{n+1}}=\frac{{2{a_n}}}{{{a_n}+2}}$,則 $\frac{1}{{a}_{n+1}}=\frac{{a}_{n}+2}{2{a}_{n}}$⇒$\frac{2}{{a}_{n+1}}-\frac{2}{{a}_{n}}=1$
可得數列{$\frac{2}{{a}_{n}}$}是以1為首項,公差為1的等差數列,∴$\frac{2}{{a}_{n}}=1+(n-1)×1=n$,即${a}_{2017}=\frac{2}{2017}$
∴${a}_{n}=\frac{2}{n}$.
故答案為:$\frac{2}{2017}$
點評 本題考查了數列的遞推關系式的應用,數列的通項公式的求法--取到數法,考查計算能力.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com