若函數在定義域內存在區間
,滿足
在
上的值域為
,則稱這樣的函數
為“優美函數”.
(Ⅰ)判斷函數是否為“優美函數”?若是,求出
;若不是,說明理由;
(Ⅱ)若函數為“優美函數”,求實數
的取值范圍.
【解析】第一問中,利用定義,判定由題意得,由
,所以
第二問中, 由題意得方程有兩實根
設所以關于m的方程
在
有兩實根,
即函數與函數
的圖像在
上有兩個不同交點,從而得到t的范圍。
解(I)由題意得,由
,所以
(6分)
(II)由題意得方程有兩實根
設所以關于m的方程
在
有兩實根,
即函數與函數
的圖像在
上有兩個不同交點。
科目:高中數學 來源: 題型:
a | x2+1 |
查看答案和解析>>
科目:高中數學 來源:2013-2014學年重慶市高三上學期期中考試理科數學試卷(解析版) 題型:解答題
已知函數.
(1)若函數在定義域內為增函數,求實數
的取值范圍;
(2)設,若函數
存在兩個零點
,且實數
滿足
,問:函數
在
處的切線能否平行于
軸?若能,求出該切線方程;若不能,請說明理由.
查看答案和解析>>
科目:高中數學 來源:2013屆遼寧省高三第四次階段測試理科數學試卷(解析版) 題型:解答題
(本小題滿分12分)已知函數(
為常數)。
(Ⅰ)函數的圖象在點(
)處的切線與函數
的圖象相切,求實數
的值;
(Ⅱ)設,若函數
在定義域上存在單調減區間,求實數
的取值范圍;
(Ⅲ)若,對于區間[1,2]內的任意兩個不相等的實數
,
,都有
成立,求
的取值范圍。
查看答案和解析>>
科目:高中數學 來源:2012-2013學年江西省高三第四次(12月)月考理科數學試卷(解析版) 題型:解答題
(本小題滿分14分)已知函數。
(Ⅰ)若函數在定義域內為增函數,求實數
的取值范圍;
(Ⅱ)設,若函數
存在兩個零點
,且滿足
,問:函數
在
處的切線能否平行于
軸?若能,求出該切線方程;若不能,請說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:
已知函數.
(1)若函數在定義域內為增函數,求實數
的取值范圍;
(2)在(1)的條件下,若,
,
,求
的極小值;
(3)設,若函數
存在兩個零點
,且滿足
,問:函數
在
處的切線能否平行于
軸?若能,求出該切線方程,若不能,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com