已知曲線的參數方程為
(
為參數),以坐標原點為極點,
軸的正半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(Ⅰ)把的參數方程化為極坐標方程;
(Ⅱ)求與
交點的極坐標(
).
科目:高中數學 來源: 題型:解答題
如圖,斜率為的直線過拋物線
的焦點,與拋物線交于兩點A、B, M為拋物線弧AB上的動點.
(Ⅰ)若,求拋物線的方程;
(Ⅱ)求△ABM面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在周長為定值的DDEC中,已知,動點C的運動軌跡為曲線G,且當動點C運動時,
有最小值
.
(1)以DE所在直線為x軸,線段DE的中垂線為y軸建立直角坐標系,求曲線G的方程;
(2)直線l分別切橢圓G與圓(其中
)于A、B兩點,求|AB|的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知拋物線與雙曲線
有公共焦點
,點
是曲線
在第一象限的交點,且
.
(1)求雙曲線的方程;
(2)以雙曲線的另一焦點
為圓心的圓
與直線
相切,圓
.過點
作互相垂直且分別與圓
、圓
相交的直線
和
,設
被圓
截得的弦長為
,
被圓
截得的弦長為
,問:
是否為定值?如果是,請求出這個定值;如果不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在平面直角坐標系中,直線l與拋物線
相交于不同的兩點A,B.
(I)如果直線l過拋物線的焦點,求的值;
(II)如果,證明直線l必過一定點,并求出該定點坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知分別是橢圓
的左、右焦點,橢圓的離心率
.
(I)求橢圓的方程;(II)已知直線
與橢圓
有且只有一個公共點
,且與直線
相交于點
.求證:以線段
為直徑的圓恒過定點
.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設點A(,0),B(
,0),直線AM、BM相交于點M,且它們的斜率之積為
.
(Ⅰ)求動點M的軌跡C的方程;
(Ⅱ)若直線過點F(1,0)且繞F旋轉,
與圓
相交于P、Q兩點,
與軌跡C相交于R、S兩點,若|PQ|
求△
的面積的最大值和最小值(F′為軌跡C的左焦點).
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在平面直角坐標系中,已知定點A(-2,0)、B(2,0),異于A、B兩點的動點P滿足,其中k1、k2分別表示直線AP、BP的斜率.
(Ⅰ)求動點P的軌跡E的方程;
(Ⅱ)若N是直線x=2上異于點B的任意一點,直線AN與(I)中軌跡E交予點Q,設直線QB與以NB為直徑的圓的一個交點為M(異于點B),點C(1,0),求證:|CM|·|CN| 為定值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com