已知分別是橢圓
的左、右焦點,橢圓的離心率
.
(I)求橢圓的方程;(II)已知直線
與橢圓
有且只有一個公共點
,且與直線
相交于點
.求證:以線段
為直徑的圓恒過定點
.
科目:高中數(shù)學 來源: 題型:解答題
如圖,在平面直角坐標系中,已知橢圓
經(jīng)過點
,橢圓的離心率
.
(1)求橢圓的方程;
(2)過點作兩直線與橢圓
分別交于相異兩點
、
.若
的平分線與
軸平行, 試探究直線
的斜率是否為定值?若是, 請給予證明;若不是, 請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知平面內(nèi)一動點P到點F(1,0)的距離與點P到y(tǒng)軸的距離的差等于1.
(Ⅰ)求動點P的軌跡C的方程;
(Ⅱ)過點F作兩條斜率存在且互相垂直的直線l1,l2,設l1與軌跡C相交于點A,B,l2與軌跡C相交于點D,E,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓的離心率為
,直線
與以原點為圓心、橢圓
的短半軸長為半徑的圓
相切.
(1)求橢圓的方程;
(2)如圖,、
、
是橢圓
的頂點,
是橢圓
上除頂點外的任意點,直線
交
軸于點
,直線
交
于點
,設
的斜率為
,
的斜率為
,求證:
為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知曲線的參數(shù)方程為
(
為參數(shù)),以坐標原點為極點,
軸的正半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(Ⅰ)把的參數(shù)方程化為極坐標方程;
(Ⅱ)求與
交點的極坐標(
).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓:
,
(1)若橢圓的長軸長為4,離心率為,求橢圓的標準方程;
(2)在(1)的條件下,設過定點的直線
與橢圓
交于不同的兩點
,且
為銳角(
為坐標原點),求直線
的斜率
的取值范圍;
(3)過原點任意作兩條互相垂直的直線與橢圓
:
相交于
四點,設原點
到四邊形
的一邊距離為
,試求
時
滿足的條件.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
如圖,已知拋物線焦點為
,直線
經(jīng)過點
且與拋物線
相交于
,
兩點
(Ⅰ)若線段的中點在直線
上,求直線
的方程;
(Ⅱ)若線段,求直線
的方程
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓的離心率為
,直線
與以原點為圓心、以橢圓
的短半軸長為半徑的圓
相切.
(1)求橢圓的方程;
(2)設橢圓的左焦點為
,右焦點為
,直線
過點
,且垂直于橢圓的長軸,動直線
垂直于
,垂足為點
,線段
的垂直平分線交
于點
,求點
的軌跡
的方程;
(3)設與
軸交于點
,不同的兩點
在
上(
與
也不重合),且滿足
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
知橢圓的左右焦點為F1,F(xiàn)2,離心率為
,以線段F1 F2為直徑的圓的面積為
, (1)求橢圓的方程;(2) 設直線l過橢圓的右焦點F2(l不垂直坐標軸),且與橢圓交于A、B兩點,線段AB的垂直平分線交x軸于點M(m,0),試求m的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com