已知橢圓的長(zhǎng)軸長(zhǎng)為
,離心率為
,
分別為其左右焦點(diǎn).一動(dòng)圓過(guò)點(diǎn)
,且與直線
相切.
(1)求橢圓及動(dòng)圓圓心軌跡
的方程;
(2) 在曲線上有兩點(diǎn)
、
,橢圓
上有兩點(diǎn)
、
,滿足
與
共線,
與
共線,且
,求四邊形
面積的最小值.
(1),
(2)四邊形PMQN面積的最小值為8
解析試題分析:解:(1)(ⅰ)由已知可得,
則所求橢圓方程. 3分
(ⅱ)由已知可得動(dòng)圓圓心軌跡為拋物線,且拋物線的焦點(diǎn)為
,準(zhǔn)線方程為
,則動(dòng)圓圓心軌跡方程為
. 5分
(2)當(dāng)直線MN的斜率不存在時(shí),,此時(shí)PQ的長(zhǎng)即為橢圓長(zhǎng)軸長(zhǎng),
從而 6分
設(shè)直線MN的斜率為k,則k≠0,直線MN的方程為:,
直線PQ的方程為
設(shè)
由,消去
可得
---8分
由拋物線定義可知: 9分
由消去
得
,
從而 10分
∴
令,∵
則
則=
,所以
=
>8 11分
所以四邊形PMQN面積的最小值為8 12分
考點(diǎn):橢圓方程,軌跡方程
點(diǎn)評(píng):主要是考查了軌跡方程的求解,以及聯(lián)立方程組結(jié)合韋達(dá)定理來(lái)求解面積,屬于基礎(chǔ)題。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知點(diǎn),動(dòng)點(diǎn)
滿足
.
(1)求動(dòng)點(diǎn)P的軌跡方程;
(2)設(shè)(1)中所求軌跡與直線交于點(diǎn)
、
兩點(diǎn) ,求證
(
為原點(diǎn))。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在極坐標(biāo)系內(nèi),已知曲線的方程為
,以極點(diǎn)為原點(diǎn),極軸方向?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/f2/9/tmben.png" style="vertical-align:middle;" />正半軸方向,利用相同單位長(zhǎng)度建立平面直角坐標(biāo)系,曲線
的參數(shù)方程為
(
為參數(shù)).
(1)求曲線的直角坐標(biāo)方程以及曲線
的普通方程;
(2)設(shè)點(diǎn)為曲線
上的動(dòng)點(diǎn),過(guò)點(diǎn)
作曲線
的兩條切線,求這兩條切線所成角余弦值的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
在直角坐標(biāo)系xOy中,直線l的方程為x-y+4=0,曲線C的參數(shù)方程為 .
(Ⅰ)已知在極坐標(biāo)(與直角坐標(biāo)系xOy取相同的長(zhǎng)度單位,且以原點(diǎn)O為極點(diǎn),以x軸正半軸為極軸)中,點(diǎn)P的極坐標(biāo)為,判斷點(diǎn)P與直線l的位置關(guān)系;
(Ⅱ)設(shè)點(diǎn)Q是曲線C上的一個(gè)動(dòng)點(diǎn),求它到直線l的距離的最值;
(Ⅲ)請(qǐng)問(wèn)是否存在直線 ,
∥l且
與曲線C的交點(diǎn)A、B滿足
;
若存在請(qǐng)求出滿足題意的所有直線方程,若不存在請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
平面內(nèi)與兩定點(diǎn)連線的斜率之積等于非零常數(shù)
的點(diǎn)的軌跡,加上
兩點(diǎn),所成的曲線
可以是圓,橢圓或雙曲線.
(Ⅰ)求曲線的方程,并討論
的形狀與
值的關(guān)系;
(Ⅱ)當(dāng)時(shí),對(duì)應(yīng)的曲線為
;對(duì)給定的
,對(duì)應(yīng)的曲線為
,若曲線
的斜率為
的切線與曲線
相交于
兩點(diǎn),且
(
為坐標(biāo)原點(diǎn)),求曲線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知橢圓的中心在原點(diǎn),其上、下頂點(diǎn)分別為
,點(diǎn)
在直線
上,點(diǎn)
到橢圓的左焦點(diǎn)的距離為
.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)是橢圓上異于
的任意一點(diǎn),點(diǎn)
在
軸上的射影為
,
為
的中點(diǎn),直線
交直線
于點(diǎn)
,
為
的中點(diǎn),試探究:
在橢圓上運(yùn)動(dòng)時(shí),直線
與圓
:
的位置關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓的上頂點(diǎn)為
,左焦點(diǎn)為
,直線
與圓
相切.過(guò)點(diǎn)
的直線與橢圓
交于
兩點(diǎn).
(I)求橢圓的方程;
(II)當(dāng)的面積達(dá)到最大時(shí),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知雙曲線的漸近線方程為
,左焦點(diǎn)為F,過(guò)
的直線為
,原點(diǎn)到直線
的距離是
(1)求雙曲線的方程;
(2)已知直線交雙曲線于不同的兩點(diǎn)C,D,問(wèn)是否存在實(shí)數(shù)
,使得以CD為直徑的圓經(jīng)過(guò)雙曲線的左焦點(diǎn)F。若存在,求出m的值;若不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓:
的右焦點(diǎn)
,過(guò)原點(diǎn)和
軸不重合的直線與橢圓
相交于
,
兩點(diǎn),且
,
最小值為
.
(Ⅰ)求橢圓的方程;
(Ⅱ)若圓:的切線
與橢圓
相交于
,
兩點(diǎn),當(dāng)
,
兩點(diǎn)橫坐標(biāo)不相等時(shí),問(wèn):
與
是否垂直?若垂直,請(qǐng)給出證明;若不垂直,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com