如圖,已知橢圓的中心在原點,其上、下頂點分別為
,點
在直線
上,點
到橢圓的左焦點的距離為
.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)設是橢圓上異于
的任意一點,點
在
軸上的射影為
,
為
的中點,直線
交直線
于點
,
為
的中點,試探究:
在橢圓上運動時,直線
與圓
:
的位置關系,并證明你的結論.
科目:高中數學 來源: 題型:解答題
橢圓:
的右焦點為
且
為常數,離心率為
,過焦點
、傾斜角為
的直線
交橢圓
與M,N兩點,
(1)求橢圓的標準方程;
(2)當=
時,
=
,求實數
的值;
(3)試問的值是否與直線
的傾斜角
的大小無關,并證明你的結論
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓C:的離心率為
,且經過點
.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)設斜率為1的直線l與橢圓C相交于,
兩點,連接MA,MB并延長交直線x=4于P,Q兩點,設yP,yQ分別為點P,Q的縱坐標,且
.求△ABM的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓過點
,其長軸、焦距和短軸的長的平方依次成等差數列.直線
與
軸正半軸和
軸分別交于點
、
,與橢圓分別交于點
、
,各點均不重合且滿足
(1)求橢圓的標準方程;
(2)若,試證明:直線
過定點并求此定點.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的長軸長為
,離心率為
,
分別為其左右焦點.一動圓過點
,且與直線
相切.
(1)求橢圓及動圓圓心軌跡
的方程;
(2) 在曲線上有兩點
、
,橢圓
上有兩點
、
,滿足
與
共線,
與
共線,且
,求四邊形
面積的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知平面上動點P()及兩個定點A(-2,0),B(2,0),直線PA、PB的斜率分別為
、
且
(I)求動點P所在曲線C的方程。
(II)設直線與曲線C交于不同的兩點M、N,當OM⊥ON時,求點O到直線
的距離。(O為坐標原點)
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設分別是橢圓的
左,右焦點。
(Ⅰ)若是第一象限內該橢圓上的一點,且
,求點
的坐標。
(Ⅱ)設過定點的直線與橢圓交于不同的兩點
,且
為銳角(其中O為坐標原點),求直線
的斜率
的取值范圍。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓的離心率為
,短軸的一個端點到右焦點的距離為
,直線
交橢圓于不同的兩點
。
(1)求橢圓的方程;
(2)若坐標原點到直線
的距離為
,求
面積的最大值。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com