【題目】已知f(n)=1+ +
+…+
.經計算得f(4)>2,f(8)>
,f(16)>3,f(32)>
.
(1)由上面數據,試猜想出一個一般性結論;
(2)用數學歸納法證明你的猜想.
科目:高中數學 來源: 題型:
【題目】已知⊙O:x2+y2=1和點M(4,2).
(Ⅰ)過點M向⊙O引切線l,求直線l的方程;
(Ⅱ)求以點M為圓心,且被直線y=2x﹣1截得的弦長為4的⊙M的方程;
(Ⅲ)設P為(Ⅱ)中⊙M上任一點,過點P向⊙O引切線,切點為Q.試探究:平面內是否存在一定點R,使得 為定值?若存在,請舉出一例,并指出相應的定值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=
(1)在給定直角坐標系內直接畫出f(x)的草圖(不用列表描點),并由圖象寫出函數 f(x)的單調減區間;
(2)當m為何值時f(x)+m=0有三個不同的零點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)是(﹣∞,0)∪(0,+∞)上的奇函數,且當x<0時,函數的部分圖象如圖所示,則不等式xf(x)<0的解集是( )
A.(﹣2,﹣1)∪(1,2)
B.(﹣2,﹣1)∪(0,1)∪(2,+∞)
C.(﹣∞,﹣2)∪(﹣1,0)∪(1,2)
D.(﹣∞,﹣2)∪(﹣1,0)∪(0,1)∪(2,+∞)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖(1)五邊形中,
,將
沿
折到
的位置,得到四棱錐
,如圖(2),點
為線段
的中點,且
平面
.
(1)求證:平面平面
;
(2)若四棱柱的體積為
,求四面體
的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列四個命題:
①“等邊三角形的三個內角均為60°”的逆命題;
②“若k>0,則方程x2+2x﹣k=0有實根”的逆否命題;
③“全等三角形的面積相等”的否命題;
④“若 =
,則
⊥
”的否命題,
其中真命題的個數是( )
A.0
B.1
C.2
D.3
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com