已知圓及定點
,點
是圓
上的動點,點
在
上,且滿足
,
點的軌跡為曲線
。
(1)求曲線的方程;
(2)若點關于直線
的對稱點在曲線
上,求
的取值范圍。
科目:高中數學 來源: 題型:解答題
已知線段MN的兩個端點M、N分別在軸、
軸上滑動,且
,點P在線段MN上,滿足
,記點P的軌跡為曲線W.
(1)求曲線W的方程,并討論W的形狀與的值的關系;
(2)當時,設A、B是曲線W與
軸、
軸的正半軸的交點,過原點的直線與曲線W交于C、D兩點,其中C在第一象限,求四邊形ACBD面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓:
的離心率為
,右焦點為
,右頂點
在圓
:
上.
(Ⅰ)求橢圓和圓
的方程;
(Ⅱ)已知過點的直線
與橢圓
交于另一點
,與圓
交于另一點
.請判斷是否存在斜率不為0的直線
,使點
恰好為線段
的中點,若存在,求出直線
的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(13分)點P為圓上一個動點,M為點P在y軸上的投影,動點Q滿足
.
(1)求動點Q的軌跡C的方程;
(2)一條直線l過點,交曲線C于A、B兩點,且A、B同在以點D(0,1)為圓心的圓上,求直線l的方程。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)已知中心在原點的橢圓的離心率
,一條準線方程為
(1)求橢圓的標準方程;
(2)若以>0)為斜率的直線
與橢圓
相交于兩個不同的點
,且線段
的垂直平分線與兩坐標軸圍成的三角形的面積為
,求
的取值范圍。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
某校同學設計一個如圖所示的“蝴蝶形圖案(陰影區域)”,其中、
是過拋物線
焦點
的兩條弦,且其焦點
,
,點
為
軸上一點,記
,其中
為銳角.
(1)求拋物線方程;
(2)求證:.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知拋物線的頂點在坐標原點,焦點為,點
是點
關于
軸的對稱點,過點
的直線交拋物線于
兩點。
(Ⅰ)試問在軸上是否存在不同于點
的一點
,使得
與
軸所在的直線所成的銳角相等,若存在,求出定點
的坐標,若不存在說明理由。
(Ⅱ)若的面積為
,求向量
的夾角;
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
在直角坐標系中,為坐標原點,如果一個橢圓經過點P(3,
),且以點F(2,0)為它的一個焦點.
(1)求此橢圓的標準方程;
(2)在(1)中求過點F(2,0)的弦AB的中點M的軌跡方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com