在直角坐標系中,為坐標原點,如果一個橢圓經過點P(3,
),且以點F(2,0)為它的一個焦點.
(1)求此橢圓的標準方程;
(2)在(1)中求過點F(2,0)的弦AB的中點M的軌跡方程.
科目:高中數學 來源: 題型:解答題
已知、
分別是橢圓
的左、右焦點,右焦點
到上頂點的距離為2,若
.
(Ⅰ)求此橢圓的方程;
(Ⅱ)點是橢圓的右頂點,直線
與橢圓交于
、
兩點(
在第一象限內),又
、
是此橢圓上兩點,并且滿足
,求證:向量
與
共線.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知橢圓過點
,且離心率
。
(Ⅰ)求橢圓的標準方程;
(Ⅱ)若直線與橢圓
相交于
,
兩點(
不是左右頂點),橢圓的右頂點為D,且滿足
,試判斷直線
是否過定點,若過定點,求出該定點的坐標;若不過定點,請說明理由。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知圓,若焦點在
軸上的橢圓
過點
,且其長軸長等于圓
的直徑.
(1)求橢圓的方程;
(2)過點作兩條互相垂直的直線
與
,
與圓
交于
、
兩點,
交橢圓于另一點
,設直線
的斜率為
,求弦
長;
(3)求面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,已知拋物線:
和⊙
:
,過拋物線
上一點
作兩條直線與⊙
相切于
、
兩點,分別交拋物線為E、F兩點,圓心點
到拋物線準線的距離為
.
(Ⅰ)求拋物線的方程;
(Ⅱ)當的角平分線垂直
軸時,求直線
的斜率;
(Ⅲ)若直線在
軸上的截距為
,求
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知三點P(5,2)、F1(-6,0)、F2(6,0)。
(1)求以F1、F2為焦點且過點P的橢圓的標準方程;
(2)設點P、F1、F2關于直線y=x的對稱點分別為,求以
為焦點且過
點的雙曲線的標準方程。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知是拋物線
上的點,
是
的焦點, 以
為直徑的圓
與
軸的另一個交點為
.
(Ⅰ)求與
的方程;
(Ⅱ)過點且斜率大于零的直線
與拋物線
交于
兩點,
為坐標原點,
的面積為
,證明:直線
與圓
相切.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com