日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
已知函數f(x)為偶函數,滿足f(x+1)=1-f(x),當x∈[0,1]時,f(x)=x,若在區間[-1,3]內,函數g(x)=f(x)-kx-k有四個零點,則實數k的取值范圍是
[0,
1
4
]
[0,
1
4
]
分析:由f(x+1)=1-f(x)可得函數f(x+2)=f(x),故函數f(x)是以2為周期的周期函數.由題意可得函數y=f(x)的圖象與直線y=k(x+1)在區間[-1,3]內有4個交點,根據奇偶性和周期性作出f(x)、y=k(x+1)的圖象,數形結合可得實數k的取值范圍.
解答:解:由f(x+1)=1-f(x)可得函數f(x+2)=1-f(x+1)=1-[1-f(x)]=f(x),故函數f(x)是以2為周期的周期函數.
函數g(x)=f(x)-kx-k有四個零點,故函數y=f(x)的圖象與直線y=k(x+1)在區間[-1,3]內有4個交點.
再根據函數f(x)為偶函數,如圖所示:可得0<k,且 k(3+1)≤1,求得0<k≤
1
4

故答案為 (0,
1
4
].
點評:本題主要考查方程的根的存在性以及根的個數判斷,函數的奇偶性,體現了數形結合的數學思想,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知函數f(x)=x2+
ax
(x≠0,常數a∈R).
(1)討論函數f(x)的奇偶性,并說明理由;
(2)若函數f(x)在[2,+∞)上為增函數,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=|x+a|-|x-a|(a≠0),h(x)=
-x2+x(x>0)
x2+x(x≤0)
,則f(x),h(x)的奇偶性依次為(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=loga(1+x)-loga(1-x)(a>0且a≠1)
(1)討論f(x)的奇偶性與單調性;
(2)若不等式|f(x)|<2的解集為{x|-
1
2
<x<
1
2
},求a
的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•嘉定區一模)已知函數f(x)=|x|•(x-a).
(1)判斷f(x)的奇偶性;
(2)設函數f(x)在區間[0,2]上的最小值為m(a),求m(a)的表達式;
(3)若a=4,證明:方程f(x)+
4x
=0有兩個不同的正數解.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知函數f(x)=3x+3-x,g(x)=
x
2
+log3(1+3-x).
(1)用定義證明:函數g(x)在區間(-∞,0]上為減函數,在區間[0,+∞)上為增函數;
(2)判斷函數g(x)的奇偶性,并證明你的結論;
(3)若g(x)≤
1
2
log3f(x)+a對一切實數x恒成立,求實數a的取值范圍.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 国产精品久久久久毛片软件 | 久草精品视频在线播放 | 97久久久| 成人午夜视频在线观看 | 日韩精品一区二区三区在线播放 | 91 视频网站| 久久韩日 | 国产精品久久一区 | 一区二区三区四区免费观看 | 狠狠躁日日躁夜夜躁东南亚 | 亚洲精品一区二区三区蜜桃久 | 国产精品美腿一区在线看 | 天天拍天天操 | 亚洲成a人v欧美综合天堂麻豆 | 久久久av | 欧美日韩一区二区三区免费视频 | 国产精品视频 | 国产一区二区三区高清 | 亚洲欧美一| 欧美一区二区三区精品 | 日韩在线成人 | 成人在线看片 | 国产精品国色综合久久 | 国产激情综合五月久久 | 久久99精品久久久久久琪琪 | 久久久精品影院 | 日韩一区二区三区在线视频 | 亚洲国产精品一区二区三区 | 不卡视频一区 | 9久9久9久女女女九九九一九 | 97人人精品 | 欧美成人精品激情在线观看 | 久久久久久久国产精品 | 国产精品一品二区三区的使用体验 | 亚洲天堂在线视频播放 | 日本涩涩视频 | 色综合天天天天做夜夜夜夜做 | 最新国产精品精品视频 | 伊人网站| 91精品久久久久 | 成人免费xxxxx在线观看 |