日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
11.已知函數$f(x)=sin(2x+\frac{7π}{4})+cos(2x-\frac{3π}{4})$,x∈R.
(1)求f(x)的最小正周期和單調增區間;
(2)已知$cos(β-α)=\frac{4}{5}$,$cos(β+α)=-\frac{4}{5}$,$0<α<β≤\frac{π}{2}$,求f(β).

分析 (1)利用誘導公式化簡函數解析式為f(x)=2sin(2x-$\frac{π}{4}$),利用三角函數周期公式可求最小正周期,利用$2kπ-\frac{π}{2}≤2x-\frac{π}{4}≤2kπ+\frac{π}{2}$,可求函數的單調增區間.
(2)利用兩角和與差的余弦函數公式化簡可得2cosβcosα=0,結合角的范圍可求$β=\frac{π}{2}$,代入即可得解.

解答 解:(1)因為$f(x)=sin(2x+\frac{7π}{4}-2π)+sin(2x-\frac{3π}{4}+\frac{π}{2})$=$sin(2x-\frac{π}{4})+sin(2x-\frac{π}{4})=2sin(2x-\frac{π}{4})$,
所以T=π,
由$2kπ-\frac{π}{2}≤2x-\frac{π}{4}≤2kπ+\frac{π}{2}$,得單調增區間為$[{kπ-\frac{π}{8},kπ+\frac{3π}{8}}]$,k∈Z.
(2)∵$cos(β-α)=\frac{4}{5}$,$cos(β+α)=-\frac{4}{5}$,
∴$cosβcosα+sinβsinα=\frac{4}{5}$,$cosβcosα-sinβsinα=-\frac{4}{5}$,
兩式相加,得2cosβcosα=0,
∵$0<α<β≤\frac{π}{2}$,
∴$β=\frac{π}{2}$,
由(1)知$f(β)=2sin(2β-\frac{π}{4})=\sqrt{2}$.

點評 本題主要考查了誘導公式,兩角和與差的余弦函數公式在三角函數化簡求值中的應用,考查了正弦函數的圖象和性質及三角函數周期公式的應用,考查了轉化思想,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

1.如圖,在長方體ABCD-A1B1C1D1中,AD=AA1=1,AB=2.
(I)求異面直線AC與B1D所成角的余弦值;
(Ⅱ)設M是線段B1D上一點,在長方體ABCD-A1B1C1D1內隨機選取一點,若該點取自于三棱錐M-ACD內的概率為$\frac{1}{18}$,試確定點M的位置.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

2.若函數$f(x)=1+\sqrt{x}$,$g(x)=\sqrt{1-x}-\sqrt{x}$,則f(x)+g(x)=1+$\sqrt{1-x}$,0≤x≤1.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

19.設常數b∈R.若函數$y=x+\frac{2^b}{x}(x>0)$在(0,4]上是減函數,在[4,+∞)上是增函數,則b=4.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

6.若直角坐標平面內兩點A,B滿足:
①A,B均在函數f(x)的圖象上;
②A,B關于原點對稱.
則稱點對[A,B]為函數f(x)的一對“匹配點對”(點對[A,B]與[B,A]視作同一對).
若函數f(x)=$\left\{\begin{array}{l}{lo{g}_{\frac{1}{2}}x,x>0}\\{-{x}^{2}-4x,x≤0}\end{array}\right.$,則此函數的“匹配點對”共有(  )對.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

16.已知拋物線C:y2=4x,焦點為F,過點P(-1,0)作斜率為k(k>0)的直線l與拋物線C交于A,B兩點,直線AF,BF分別交拋物線C于M,N兩點,若$\frac{|AF|}{|FM|}$+$\frac{|BF|}{|FN|}$=18,則k=$\frac{\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

3.已知函數y=$\frac{{2}^{x+1}}{{2}^{x}+1}$與函數y=$\frac{x+1}{x}$的圖象共有k(k∈N*)個公共點,A1(x1,y1),A2(x2,y2),…,Ak(xk,yk),則$\sum_{i=1}^{k}$(xi+yi)=2.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

20.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)過點M(2,1),且離心率為$\frac{\sqrt{3}}{2}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設A(0,-1),直線l與橢圓C交于P,Q兩點,且|AP|=|AQ|,當△OPQ(O為坐標原點)的面積S最大時,求直線l的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

1.已知函數$f(x)=\frac{1+a}{x}(a∈R)$.
(Ⅰ) 當a=0時,求曲線f (x)在x=1處的切線方程;
(Ⅱ) 設函數h(x)=alnx-x-f(x),求函數h (x)的極值;
(Ⅲ) 若g(x)=alnx-x在[1,e](e=2.718 28…)上存在一點x0,使得g(x0)≥f(x0)成立,求a的取值范圍.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 久久91视频 | 精品国产乱码久久久久久久 | 一二三区视频 | 国产精品欧美日韩 | 中文字幕成人免费视频 | 日韩在线成人 | 亚洲成人在线免费 | 91精品久久久久久久久中文字幕 | 亚洲精品在线播放视频 | 亚洲人成电影网 | 日韩av一区二区在线 | 在线精品一区二区 | 欧美精品一区二区三区在线播放 | 国产精品无 | 免费中文字幕 | а天堂中文最新一区二区三区 | 成人在线片 | 亚洲国产成人在线 | 五月婷婷亚洲综合 | 国产精品久久一区二区三区 | 国产免费久久 | 日本大片在线观看 | 国产精品日韩专区 | 天天操操 | 欧美精品日韩 | 亚洲一区二区高清视频 | 一区二区三区在线视频免费观看 | 亚洲高清在线观看 | 国产亚洲欧美在线 | 精品在线一区二区 | 国产精品11 | 精品久久久久久久久久久久包黑料 | 激情com | 亚洲免费视频大全 | 日韩高清在线一区 | 日日射av| 欧美激情第二页 | 亚洲精品久久久日韩美女极品合集下载 | 亚洲精品在线播放 | 黄色拍拍视频 | 国产区视频在线观看 |