【題目】設(shè)函數(shù),
.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)在
處取得極大值,求正實(shí)數(shù)
的取值范圍.
【答案】(1)見解析;(2)正實(shí)數(shù)的取值范圍為
。
【解析】試題分析:(1)求出,分兩種情況討論,分別令
求得
的范圍,可得函數(shù)
增區(qū)間,
求得
的范圍,可得函數(shù)
的減區(qū)間;(2)討論
的取值范圍,分別利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,根據(jù)函數(shù)極值的定義,進(jìn)行驗(yàn)證即可得到結(jié)論.
試題解析:(1)由,
所以.
當(dāng)時(shí),
,函數(shù)
在
上單調(diào)遞增;
當(dāng)時(shí),
,函數(shù)
單調(diào)遞增,
時(shí),
,函數(shù)
單調(diào)遞減.
所以當(dāng)時(shí),
的單調(diào)增區(qū)間為
;
當(dāng)時(shí),
的單調(diào)增區(qū)間為
,單調(diào)減區(qū)間為
.
(2)∵,
∴且
.
由(1)知①當(dāng)時(shí),
,由(1)知
在
內(nèi)單調(diào)遞增,可得當(dāng)
時(shí),
,當(dāng)
時(shí),
.
所以在
內(nèi)單調(diào)遞減,在
內(nèi)單調(diào)遞增,所以
在
處取得極小值,不合題意.
②當(dāng)時(shí),
,
在
內(nèi)單調(diào)遞增,在
內(nèi)單調(diào)遞減,所以當(dāng)
時(shí),
,
單調(diào)遞減,不合題意.
③當(dāng)時(shí),
,當(dāng)
時(shí),
,
單調(diào)遞增,當(dāng)
時(shí),
,
單調(diào)遞減.
所以在
處取得極大值,符合題意.
綜上可知,正實(shí)數(shù)的取值范圍為
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若執(zhí)行右側(cè)的程序框圖,當(dāng)輸入的x的值為4時(shí),輸出的y的值為2,則空白判斷框中的條件可能為( )
A.x>3
B.x>4
C.x≤4
D.x≤5
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)為吸引顧客消費(fèi)推出一項(xiàng)優(yōu)惠活動(dòng).活動(dòng)規(guī)則如下:消費(fèi)額每滿100元可轉(zhuǎn)動(dòng)如圖所示的轉(zhuǎn)盤一次,并獲得相應(yīng)金額的返券,假定指針等可能地停在任一位置.若指針停在A區(qū)域返券60元;停在B區(qū)域返券30元;停在C區(qū)域不返券.例如:消費(fèi)218元,可轉(zhuǎn)動(dòng)轉(zhuǎn)盤2次,所獲得的返券金額是兩次金額之和.
(1)若某位顧客消費(fèi)128元,求返券金額不低于30元的概率;
(2)若某位顧客恰好消費(fèi)280元,并按規(guī)則參與了活動(dòng),他獲得返券的金額記為(元).求隨機(jī)變量
的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)《中華人民共和國(guó)道路交通安全法》規(guī)定:“車輛駕駛員血液酒精溶度(單位mg/100ml)/在,屬于酒后駕駛;血液濃度不低于80,屬于醉酒駕駛。”2017年“中秋節(jié)”晚9點(diǎn)開始,濟(jì)南市交警隊(duì)在桿石橋交通崗前設(shè)點(diǎn),對(duì)過往的車輛進(jìn)行檢查,經(jīng)過4個(gè)小時(shí),共查處喝過酒的駕駛者60名,下圖是用酒精測(cè)試儀對(duì)這60名駕駛者血液中酒精溶度進(jìn)行檢測(cè)后所得結(jié)果畫出的頻率分布直方圖。
(1)求這60名駕駛者中屬于醉酒駕車的人數(shù)(圖中每組包括左端點(diǎn),不包括右端點(diǎn))
(2)若以各小組的中值為該組的估計(jì)值,頻率為概率的估計(jì)值,求這60名駕駛者血液的酒精濃度的平均值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列各項(xiàng)均為正數(shù),
,
,且
對(duì)任意
恒成立,記
的前
項(xiàng)和為
.
(1)若,求
的值;
(2)證明:對(duì)任意正實(shí)數(shù),
成等比數(shù)列;
(3)是否存在正實(shí)數(shù),使得數(shù)列
為等比數(shù)列.若存在,求出此時(shí)
和
的表達(dá)式;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線:
的焦點(diǎn)為
,過
的直線
交拋物線
于點(diǎn)
,當(dāng)直線
的傾斜角是
時(shí),
的中垂線交
軸于點(diǎn)
.
(1)求的值;
(2)以為直徑的圓交
軸于點(diǎn)
,記劣弧
的長(zhǎng)度為
,當(dāng)直線
繞
點(diǎn)旋轉(zhuǎn)時(shí),求
的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以
為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系,曲線
的極坐標(biāo)方程為
,
是曲線
與直線
:
(
)的交點(diǎn)(異于原點(diǎn)
).
(1)寫出,
的直角坐標(biāo)方程;
(2)求過點(diǎn)和直線
垂直的直線
的極坐標(biāo)方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= -
,g(x)=
.
(1)若,函數(shù)
的圖像與函數(shù)
的圖像相切,求
的值;
(2)若,
,函數(shù)
滿足對(duì)任意
(x1
x2),都有
恒成立,求
的取值范圍;
(3)若,函數(shù)
=f(x)+ g(x),且G(
)有兩個(gè)極值點(diǎn)x1,x2,其中x1
,求
的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com