【題目】已知以為首項的數(shù)列
滿足:
(1)當,
時,求數(shù)列
的通項公式;
(2)當,
時,試用
表示數(shù)列
前100項的和
;
(3)當(
是正整數(shù)),
,正整數(shù)
時,判斷數(shù)列
,
,
,
是否成等比數(shù)列?并說明理由.
【答案】(1);(2)
;(3)見解析.
【解析】
(1)根據(jù)遞推關系式先寫前幾項,再根據(jù)周期寫通項公式;
(2)根據(jù)遞推關系式先寫前幾項,再根據(jù)周期寫通項公式,最后根據(jù)分組求和以及等比數(shù)列求和公式得結(jié)果;
(3)分與
兩種情況,根據(jù)遞推關系式確定
,
,
,再根據(jù)等比數(shù)列定義判斷
(1) 當,
時,
所以
即.
(2)當時,
,
,
,
,
,
,…,
,
,
,
,
(3)①當時,
;
,
.
,
,
,
,
,
.
綜上所述,當時,數(shù)列
,
,
,
是公比為
的等比數(shù)列.
②當時,
,
,
,
.
由于,
,
,
故數(shù)列,
,
,
不是等比數(shù)列.
綜上,時數(shù)列
,
,
,
成等比數(shù)列;
時數(shù)列
,
,
,
不成等比數(shù)列.
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在“楊輝三角”中,去除所有為1的項,依次構成數(shù)列2,3,3,4,6,4,5,10,10,5,…,則此數(shù)列前21項的和為_______________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】大數(shù)據(jù)時代對于現(xiàn)代人的數(shù)據(jù)分析能力要求越來越高,數(shù)據(jù)擬合是一種把現(xiàn)有數(shù)據(jù)通過數(shù)學方法來代入某條數(shù)式的表示方式,比如,
,2,
,n是平面直角坐標系上的一系列點,用函數(shù)
來擬合該組數(shù)據(jù),盡可能使得函數(shù)圖象與點列
比較接近.其中一種描述接近程度的指標是函數(shù)的擬合誤差,擬合誤差越小越好,定義函數(shù)
的擬合誤差為:
.已知平面直角坐標系上5個點的坐標數(shù)據(jù)如表:
x | 1 | 3 | 5 | 7 | 9 |
y | 12 | 4 | 12 |
若用一次函數(shù)
來擬合上述表格中的數(shù)據(jù),求該函數(shù)的擬合誤差
的最小值,并求出此時的函數(shù)解析式
;
若用二次函數(shù)
來擬合題干表格中的數(shù)據(jù),求
;
請比較第
問中的
和第
問中的
,用哪一個函數(shù)擬合題目中給出的數(shù)據(jù)更好?
請至少寫出三條理由
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),且函數(shù)
為偶函數(shù)。
(1)求的解析式;
(2)若方程有三個不同的實數(shù)根,求實數(shù)m的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),
,其中
為自然對數(shù)的底數(shù),
.
(1)求證:;
(2)若對于任意,
恒成立,求
的取值范圍;
(3)若存在,使
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐O﹣ABCD中,底面ABCD四邊長為1的菱形,∠ABC=,OA⊥底面ABCD,OA=2,M為OA的中點,N為BC的中點.
(1)證明:直線MN∥平面OCD;
(2)求異面直線AB與MD所成角的大小;
(3)求點B到平面OCD的距離.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,有四座城市、
、
、
,其中
在
的正東方向,且與
相距
,
在
的北偏東
方向,且與
相距
;
在
的北偏東
方向,且與
相距
,一架飛機從城市
出發(fā)以
的速度向城市
飛行,飛行了
,接到命令改變航向,飛向城市
,此時飛機距離城市
有( )
A.B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com