分析 根據不等式的性質求出( $\frac{{x}^{2}}{y}$)2∈[16,36],$\frac{1}{{xy}^{2}}$∈[$\frac{1}{8}$,$\frac{1}{3}$],從而求出$\frac{{x}^{3}}{{y}^{4}}$的范圍即可.
解答 解:∵實數x,y滿足3≤xy2≤8,4≤$\frac{{x}^{2}}{y}$≤6,
則有:( $\frac{{x}^{2}}{y}$)2∈[16,36],$\frac{1}{{xy}^{2}}$∈[$\frac{1}{8}$,$\frac{1}{3}$],
又 $\frac{{x}^{3}}{{y}^{4}}$=( $\frac{{x}^{2}}{y}$)2•$\frac{1}{{xy}^{2}}$∈[2,12],
故答案為:[2,12].
點評 本題考查了不等式的基本性質,考查轉化思想,是一道中檔題.
科目:高中數學 來源: 題型:選擇題
A. | [0,1) | B. | (0,1] | C. | $[\frac{1}{3},\frac{2}{3})$ | D. | $(\frac{1}{3},\frac{2}{3}]$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 2 | B. | 3 | C. | 4 | D. | 5 |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com