日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

4.已知函數(shù)f(x)=ax3+bx2,在x=1處有極大值3,則f(x)的極小值為(  )
A.0B.1C.2D.-3

分析 求函數(shù)的導(dǎo)數(shù),結(jié)合函數(shù)的極大值建立方程關(guān)系進(jìn)行求解a,b.根據(jù)函數(shù)極值的定義進(jìn)行求解函數(shù)的極小值即可.

解答 解:函數(shù)的導(dǎo)數(shù)f′(x)=3ax2+2bx,
∵當(dāng)x=1時(shí),函數(shù)有極大值3,
∴$\left\{\begin{array}{l}{f(1)=3}\\{f′(1)=0}\end{array}\right.$,得$\left\{\begin{array}{l}{a+b=3}\\{3a+2b=0}\end{array}\right.$.得$\left\{\begin{array}{l}{a=-6}\\{b=9}\end{array}\right.$,
經(jīng)檢驗(yàn)x=1是函數(shù)的極大值,
故a=-6,b=9.
函數(shù)化為f(x)=-6x3+9x2
f′(x)=-18x2+18x,
由f′(x)>0得0<x<1,
由f′(x)<0得x>1或x<0,
即當(dāng)x=1時(shí)函數(shù)取得極大值3,
當(dāng)x=0時(shí),函數(shù)取得極小值f(0)=0.
故選:A.

點(diǎn)評(píng) 本題主要考查函數(shù)極值的求解和應(yīng)用,根據(jù)函數(shù)極值和函數(shù)導(dǎo)數(shù)之間的關(guān)系,建立方程關(guān)系是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知函數(shù)f(x)=(ax+1)ex
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)a>0時(shí),求函數(shù)f(x)在區(qū)間[-2,0]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知圓錐曲線x2+ay2=1的一個(gè)焦點(diǎn)坐標(biāo)為$F(\frac{2}{{\sqrt{|a|}}},0)$,則該圓錐曲線的離心率為$\frac{{2\sqrt{3}}}{3}$或$\frac{{2\sqrt{5}}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知x0,x0+$\frac{π}{2}$是函數(shù)f(x)=${cos^2}(ωx-\frac{π}{6})-{sin^2}$ωx(ω>0)的兩個(gè)相鄰的零點(diǎn).
(1)求f(x)的單調(diào)遞減區(qū)間;
(2)若對(duì)任意$x∈[-\frac{7π}{12},0]$,都有|f(x)-m|≤1成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.對(duì)于數(shù)89,進(jìn)行如下計(jì)算:82+92=145,12+42+52=42,42+22=20…,如此反復(fù)運(yùn)算,則第2016次運(yùn)算的結(jié)果是(  )
A.16B.37C.58D.89

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知四邊形ABCD是菱形,點(diǎn)P在對(duì)角線AC上(不包括端點(diǎn)A,C)的充要條件是$\overrightarrow{AP}$=λ($\overrightarrow{AB}$+$\overrightarrow{AD}$),則λ的取值范圍(  )
A.λ∈(0,1)B.λ∈(-1,0)C.λ∈(0,$\frac{\sqrt{2}}{2}$)D.λ∈(-$\frac{\sqrt{2}}{2}$,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知y=xcosx,則y′=$\frac{1}{2}sin2x•{x}^{cosx-1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知點(diǎn)F1,F(xiàn)2為橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1的兩焦點(diǎn),P為該橢圓C上的任意一點(diǎn),△PF1F2的面積的最大值為$\sqrt{3}$,
且橢圓C過(guò)點(diǎn)(1,$\frac{\sqrt{3}}{2}$).
(I)求橢圓C的方程;
(II)點(diǎn)A為橢圓C的右頂點(diǎn),過(guò)點(diǎn)B(1,0)作直線l與橢圓C相交于E,F(xiàn)兩點(diǎn),直線AE,AF與直線x=3分別交于不同的兩點(diǎn)M,N,求$\overrightarrow{EM}$•$\overrightarrow{FN}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知ABCD為等腰梯形,AD∥BC,AD=2,M,N分別為AD,BC的中點(diǎn),MN=$\sqrt{3}$,現(xiàn)以AD為邊,作兩個(gè)正三角形△EAD與△PAD,如圖,其中平面EAD與平面ABCD共面,平面PAD⊥平面ABCD,Q為PE
的中點(diǎn).
(Ⅰ)求證:平面QAD∥平面PBC;
(Ⅱ)求證:PE⊥平面PBC;
(Ⅲ)求AE與平面PDE所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案
主站蜘蛛池模板: 欧美片网站免费 | 免费xxxxx在线观看网站软件 | 国产一国产寡妇一级毛片 | 国内在线精品 | 国产欧美日韩在线 | 国产一级免费在线观看 | 亚洲欧美影院 | 一区二区久久久 | 国产精品久久av | 色婷婷综合在线 | av免费网站在线观看 | 人人干人人爱 | 91在线中文字幕 | 91精品国产综合久久久久久漫画 | 亚洲精品一区二三区不卡 | 日韩在线观看视频免费 | 国产精品视频一区二区三区不卡 | 国产成人99久久亚洲综合精品 | 精品视频在线免费观看 | 日韩成人在线看 | 精品一区二区三区在线视频 | 欧美国产日韩另类 | 综合网视频 | 亚洲免费在线视频 | 婷婷桃色网 | 欧美日韩最新 | 亚洲偷色 | 久福利 | 伦乱视频 | 成人国产 | 99精品欧美一区二区三区 | 91精品国产综合久久婷婷香蕉 | 中文字幕不卡av | 黄a一级 | 精品久久久久久久久久 | 欧美在线一二三 | 噜噜噜天天躁狠狠躁夜夜精品 | 操操网 | 久久夜夜 | 日韩和欧美的一区二区 | 色爽|