【題目】已知函數(shù)與函數(shù)
在點(diǎn)
處有公共的切線,設(shè)
.
(1) 求的值
(2)求在區(qū)間
上的最小值.
【答案】(1);(2)當(dāng)
時(shí),
在
上的最小值為
當(dāng)時(shí),
在
上的最小值為
當(dāng)時(shí),
在
上的最小值為
.
【解析】
試題(1)利用導(dǎo)數(shù)的幾何意義,先求導(dǎo),然后把x=1代入即可求出a的值;(2)由(1)可知,根據(jù)F(x)的函數(shù)形式,可以利用求導(dǎo)的方法來解決問題,在解題的過程中要注意對(duì)參數(shù)m進(jìn)行討論.
試題解析:(1)因?yàn)?/span>所以
在函數(shù)
的圖象上
又,所以
所以
(2)因?yàn)?/span>,其定義域?yàn)?/span>
當(dāng)時(shí),
,
所以在
上單調(diào)遞增
所以在
上最小值為
當(dāng)時(shí),令
,得到
(舍)
當(dāng)時(shí),即
時(shí),
對(duì)
恒成立,
所以在
上單調(diào)遞增,其最小值為
當(dāng)時(shí),即
時(shí),
對(duì)
成立,
所以在
上單調(diào)遞減,
其最小值為
當(dāng),即
時(shí),
對(duì)
成立,
對(duì)
成立
所以在
單調(diào)遞減,在
上單調(diào)遞增
其最小值為
綜上,當(dāng)時(shí),
在
上的最小值為
當(dāng)時(shí),
在
上的最小值為
當(dāng)時(shí),
在
上的最小值為
.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知定義域?yàn)?/span>的函數(shù)
存在兩個(gè)零點(diǎn).
(1)求實(shí)數(shù)的取值范圍;
(2)若,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將4名大學(xué)生隨機(jī)安排到A,B,C,D四個(gè)公司實(shí)習(xí).
(1)求4名大學(xué)生恰好在四個(gè)不同公司的概率;
(2)隨機(jī)變量X表示分到B公司的學(xué)生的人數(shù),求X的分布列和數(shù)學(xué)期望E(X).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足:a1=1,,記
.
(1)求b1,b2的值;
(2)證明:數(shù)列{bn}是等比數(shù)列;
(3)求數(shù)列{an}的通項(xiàng)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如果不是等差數(shù)列,但若
,使得
,那么稱
為“局部等差”數(shù)列.已知數(shù)列
的項(xiàng)數(shù)為4,記事件
:集合
,事件
:
為“局部等差”數(shù)列,則條件概率
( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),函數(shù)
恰有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)
的值;
(2)當(dāng)時(shí),
① 若對(duì)于任意,恒有
,求
的取值范圍;
② 若,求函數(shù)
在區(qū)間
上的最大值
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),其中,角
的頂點(diǎn)與坐標(biāo)原點(diǎn)重合,始邊與
軸非負(fù)半軸重合,終邊經(jīng)過點(diǎn)
,且
.
(Ⅰ)若點(diǎn)的坐標(biāo)為
,求
的值;
(Ⅱ)若點(diǎn)為線性約束條件
所圍成的平面區(qū)域上的一個(gè)動(dòng)點(diǎn),試確定角
的取值范圍,并求函數(shù)
的最小值和最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)集合.若
的非空子集
中奇數(shù)的個(gè)數(shù)大于偶數(shù)的個(gè)數(shù),則稱
是“好的”.試求
的所有“好的”子集的個(gè)數(shù)(答案寫成最簡(jiǎn)結(jié)果).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,港口在港口
的正東120海里處,小島
在港口
的北偏東
的方向,且在港口
北偏西
的方向上,一艘科學(xué)考察船從港口
出發(fā),沿北偏東
的
方向以20海里/小時(shí)的速度駛離港口
.一艘給養(yǎng)快艇從港口
以60海里/小時(shí)的速度駛向小島
,在
島轉(zhuǎn)運(yùn)補(bǔ)給物資后以相同的航速送往科考船.已知兩船同時(shí)出發(fā),補(bǔ)給裝船時(shí)間為1小時(shí).
(1)求給養(yǎng)快艇從港口到小島
的航行時(shí)間;
(2)給養(yǎng)快艇駛離港口后,最少經(jīng)過多少小時(shí)能和科考船相遇?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com