【題目】在長方體ABCD-A1B1C1D1中(如圖),AD=AA1=1,AB=2,點E是棱AB的中點.
(1)求異面直線AD1與EC所成角的大小;
(2)《九章算術》中,將四個面都是直角三角形的四面體稱為鱉臑,試問四面體D1CDE是否為鱉臑?并說明理由.
【答案】(1) (2)見解析
【解析】
(1)取CD中點F,連接AF,則AF∥EC,即∠D1AF為異面直線AD1與EC所成角,解三角形可得△AD1F為等邊三角形,從而得到異面直線AD1與EC所成角的大小;
(2)證明DE⊥CE,進一步得到D1E⊥CE,可知四面體D1CDE是鱉臑.
解:(1)取CD中點F,連接AF,則AF∥EC,
∴∠D1AF為異面直線AD1與EC所成角.
在長方體ABCD-A1B1C1D1中,由AD=AA1=1,AB=2,
得
∴△AD1F為等邊三角形,則.
∴異面直線AD1與EC所成角的大小為;
(2)連接DE,∵E為AB的中點,∴DE=EC=,
又CD=2,∴DE2+CE2=DC2,得DE⊥CE.
∵D1D⊥底面DEC,則D1D⊥CE,∴CE⊥平面D1DE,得D1E⊥CE.
∴四面體D1CDE的四個面都是直角三角形,
故四面體D1CDE是鱉臑.
科目:高中數學 來源: 題型:
【題目】某工廠生產某種產品的年固定成本為200萬元,每生產千件,需另投入成本為
,當年產量不足80千件時,
(萬元).當年產量不小于80千件時,
(萬元).每件商品售價為0.05萬元.通過市場分析,該廠生產的商品能全部售完.
(1)寫出年利潤(萬元)關于年產量
(千件)的函數解析式;
(2)當年產量為多少千件時,該廠在這一商品的生產中所獲利潤最大?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列命題中,正確的有( )
A.向量與
是共線向量,則點
、
、
、
必在同一條直線上
B.若且
,則角
為第二或第四象限角
C.函數是周期函數,最小正周期是
D.中,若
,則
為鈍角三角形
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱柱ABC-A1B1C1中,AA1C1C是邊長為4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.
(Ⅰ)求證:AA1⊥平面ABC;
(Ⅱ)求二面角A1-BC1-B1的余弦值;
(Ⅲ)證明:在線段BC1存在點D,使得AD⊥A1B,并求的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在平面直角坐標系中,圓的參數方程為
(
為參數).以坐標原點為極點,
軸的正半軸為極軸建立極坐標系,直線
的極坐標方程為
.
(1)求圓的普通方程和直線
的直角坐標方程;
(2)若直線與圓
交于
兩點,
是圓
上不同于
兩點的動點,求
面積的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com