【題目】已知橢圓 =1(a>b>0)的一個頂點為A(0,1),離心率為
,過點B(0,﹣2)及左焦點F1的直線交橢圓于C,D兩點,右焦點設為F2 .
(1)求橢圓的方程;
(2)求△CDF2的面積.
【答案】
(1)解:∵橢圓 =1(a>b>0)的一個頂點為A(0,1),離心率為
,
∴b= =1,且
=
,解之得a=
,c=1
可得橢圓的方程為
(2)解:∵左焦點F1(﹣1,0),B(0,﹣2),得F1B直線的斜率為﹣2
∴直線F1B的方程為y=﹣2x﹣2
由 ,化簡得9x2+16x+6=0.
∵△=162﹣4×9×6=40>0,
∴直線與橢圓有兩個公共點,設為C(x1,y1),D(x2,y2),
則
∴|CD|= |x1x2|=
=
=
又∵點F2到直線BF1的距離d= =
,
∴△CDF2的面積為S= |CD|×d=
×
=
【解析】(1)根據橢圓的基本概念和平方關系,建立關于a、b、c的方程,解出a= ,b=c=1,從而得到橢圓的方程;(2)求出F1B直線的斜率得直線F1B的方程為y=﹣2x﹣2,與橢圓方程聯解并結合根與系數的關系算出|xspan>1﹣x2|=
,結合弦長公式可得|CD|=
,最后利用點到直線的距離公式求出F2到直線BF1的距離d,即可得到△CDF2的面積.
科目:高中數學 來源: 題型:
【題目】已知圓C過兩點M(﹣3,3),N(1,﹣5),且圓心在直線2x﹣y﹣2=0上
(1)求圓的方程;
(2)直線l過點(﹣2,5)且與圓C有兩個不同的交點A、B,若直線l的斜率k大于0,求k的取值范圍;
(3)在(2)的條件下,是否存在直線l使得弦AB的垂直平分線過點P(3,﹣1),若存在,求出直線l的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某鋼廠打算租用,
兩種型號的火車車皮運輸900噸鋼材,
,
兩種車皮的載貨量分別為36噸和60噸,租金分別為1.6萬元/個和2.4萬元/個,鋼廠要求租車皮總數不超過21個,且
型車皮不多于
型車皮7個,分別用
,
表示租用
,
兩種車皮的個數.
(1)用,
列出滿足條件的數學關系式,并畫出相應的平面區域;
(2)分別租用,
兩種車皮的個數是多少時,才能使得租金最少?并求出此最小租金.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=sin(2x+φ),其中φ為實數,若f(x)≤|f( )|對x∈R恒成立,且f(
)>f(π),則f(x)的單調遞增區間是( )
A.[kπ﹣ ,kπ+
](k∈Z)
B.[kπ,kπ+ ](k∈Z)
C.[kπ+ ,kπ+
](k∈Z)
D.[kπ﹣ ,kπ](k∈Z)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com