日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 高中數學 > 題目詳情
設函數f(x)=sin(
3
x+φ)(0<φ<π)
,若f(x)+f′(x)是偶函數,則φ=
π
6
π
6
分析:先求導得到f(x),再把f(x)+f′(x)化為Asin(ωx+Φ),進而利用f(x)+f′(x)是偶函數即可求出φ的值.
解答:解:∵f(x)=
3
cos(
3
x+
φ),
∴f(x)+f(x)=sin(
3
x
+φ)+
3
cos(
3
x+φ)=2sin(
3
x+φ+
π
3
).
∵f(x)+f(x)是偶函數,∴在x=0時取得最值,必有sin(φ+
π
3
)=±1.
又∵0<φ<π,∴
π
3
φ+
π
3
3
,∴φ+
π
3
=
π
2
,解得φ=
π
6

故答案為
π
6
點評:熟練掌握導數的運算性質、三角函數的奇偶性與單調性及兩角和的正弦公式是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2011•安徽模擬)設函數f(x)=sin(x+
π
6
)+2sin2
x
2
,x∈[0,π]

(Ⅰ)求f(x)的值域;
(Ⅱ)記△ABC的內角A、B、C的對邊長分別為a,b,c,若f(B)=1,b=1,c=
3
,求a
的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=sin(ωx+φ)(ω>0,-
π
2
<φ<
π
2
)
,給出以下四個論斷:
①它的圖象關于直線x=
π
12
對稱;     
②它的圖象關于點(
π
3
,0)
對稱;
③它的周期是π;                   
④在區(qū)間[0,
π
6
)
上是增函數.
以其中兩個論斷作為條件,余下的一個論斷作為結論,寫出你認為正確的命題:
條件
①③
①③
結論
;(用序號表示)

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=sin(ωx+
π
4
)(x∈R,ω>0)
的部分圖象如圖所示.
(1)求f(x)的表達式;
(2)若f(x)•f(-x)=
1
4
x∈(
π
4
π
2
)
,求tanx的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=sin(2x+
π
3
)
,則下列結論正確的是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=sinωx+2
3
sin2
ωx
2
(ω>0)的最小正周期為
3

(Ⅰ)求函數f(x)的解析式;
(Ⅱ)若將y=f(x)的圖象向左平移
π
2
個單位可得y=g(x)的圖象,求不等式g(x)≥2
3
的解集.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 欧美一区二区三区 | 日韩不卡 | 亚洲一区二区三区四区在线观看 | 日本免费在线 | 亚洲免费视频在线观看 | 午夜av在线播放 | 91精品国产欧美一区二区成人 | 91久久国产 | 久久久国产精品 | 色999国产| 精品一区二区三区四区 | 久草免费在线视频 | 欧美精品一级 | 日韩久久精品电影 | 欧美久久影视 | 狠狠色噜噜狠狠色综合久 | 亚洲欧美激情精品一区二区 | 亚洲毛片在线观看 | 国产精品久久久久久久久久久久久久久久 | 久久草在线视频 | 在线免费黄色小视频 | 欧美精品久久久久久久监狱 | 北条麻妃99精品青青久久主播 | 日本在线免费播放 | 日韩欧美中文字幕在线观看 | 国产高清在线观看 | 天天操天天摸天天干 | 久久久经典视频 | 久久99国产精品 | 逼逼av| 午夜私人福利 | 精品国产一级毛片 | 中文字幕av亚洲精品一部二部 | 国产91亚洲精品 | 美女隐私视频黄www曰本 | 97综合| 日本一区二区在线视频 | 日本一区二区三区在线观看 | 欧美片网站免费 | 伊人婷婷 | 免费一区 |