【題目】如圖,在四面體中,
,
.
(Ⅰ)求證:;
(Ⅱ)若與平面
所成的角為
,點
是
的中點,求二面角
的大小.
【答案】(Ⅰ)證明見解析;(Ⅱ).
【解析】分析:(Ⅰ)由勾股定理可得, 則
,
,進一步可得
, 則
.
(Ⅱ)結合(Ⅰ)的結論和幾何關系,以B為原點,建立空間直角坐標系,則平面BDE的法向量為
,且
是平面CBD的一個法向量.結合空間向量計算可得二面角
的大小為
.
詳解:(Ⅰ)由已知得,
,
又,
,
,
,
又,
,
,
.
(Ⅱ)由(Ⅰ)知,AB與平面BCD所成的角為,即
,
設BD=2,則BC=2,在中,AB=4,
由(Ⅰ)中,得平面ABC⊥平面ABD,在平面ABD內,過點B作
,則
平面ABC,以B為原點,建立空間直角坐標系
,
則,
,
,
,由
,
,
得,
∴,
,
設平面BDE的法向量為,
則,取
,解得
,
∴是平面BDE的一個法向量,
又是平面CBD的一個法向量.
設二面角的大小為
,易知
為銳角,
則,
∴,即二面角
的大小為
.
科目:高中數學 來源: 題型:
【題目】己知二次函數(
、
、
均為實常數,
)的最小值是0,函數
的零點是
和
,函數
滿足
,其中
,為常數.
(1)已知實數、
滿足、
,且
,試比較
與
的大小關系,并說明理由;
(2)求證:.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本題滿分18分,第(1)小題4分,第(2)小題5分,第(3)小題9分)
設函數的定義域為
,值域為
,如果存在函數
,使得函數
的值域仍是
,那么稱
是函數
的一個等值域變換.
(1)判斷下列函數是不是函數
的一個等值域變換?說明你的理由;
,
;
,
.
(2)設函數的定義域為
,值域為
,函數
的定義域為
,值域為
,那么“
”是否為“
是
的一個等值域變換”的一個必要條件?請說明理由;
(3)設的定義域為
,已知
是
的一個等值域變換,且函數
的定義域為
,求實數
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下面有五個命題:
①函數的最小正周期是
;
②終邊在y軸上的角的集合是;
③在同一坐標系中,函數的圖象和函數
的圖象有一個公共點;
④把函數;
⑤在中,若
,則
是等腰三角形
;
其中真命題的序號是( )
A.(1)(2)(3) B.(2)(3)(4)
C.(3)(4)(5) D.(1)(4)(5)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,曲線C的參數方程為
(t為參數),以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,直線
的極坐標方程為
.
(1)求C的普通方程和的直角坐標方程;
(2)求C上的點到距離的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,曲線C1的參數方程為(θ為參數),以原點為極點,x軸非負半軸為極軸,建立極坐標系,曲線C2的極坐標方程為
.
(1)求曲線C1的極坐標方程以及曲線C2的直角坐標方程;
(2)若直線l:y=kx與曲線C1、曲線C2在第一象限交于P、Q,且|OQ|=|PQ|,點M的直角坐標為(1,0),求△PMQ的面積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com