【題目】設分別是橢圈
的左、右焦點,
是橢圓上第二象限內的一點且
與
軸垂直,直線
與橢圓的另一個交點為
.
(1)若直線的斜率為
,求橢圓的離心率;
(2)若直線與
軸的交點為
,且
求
.
科目:高中數學 來源: 題型:
【題目】已知函數,
(Ⅰ)若在
上的最大值為
,求實數b的值;
(Ⅱ)若對任意x∈[1,e],都有恒成立,求實數a的取值范圍;
(Ⅲ)在(Ⅰ)的條件下,設,對任意給定的正實數a,曲線y=F(x)上是否存在兩點P、Q,使得△POQ是以O(O為坐標原點)為直角頂點的直角三角形,且此三角形斜邊中點在y軸上?請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知三棱柱,
平面
,P是
內一點,點E,F在直線
上運動,若直線
和
所成角的最小值與直線
和平面
所成角的最大值相等,則滿足條件的點P的軌跡是( )
A.圓的一部分B.橢圓的一部分C.拋物線的一部分D.雙曲線的一部分
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】己知函數在
處的切線方程為
,函數
.
(1)求函數的解析式;
(2)求函數的極值;
(3)設(
表示
,
中的最小值),若
在
上恰有三個零點,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知△ABC的三個頂點分別為A(﹣3,0),B(2,1),C(﹣2,3),試求:
(1)邊AC所在直線的方程;
(2)BC邊上的中線AD所在直線的方程;
(3)BC邊上的高AE所在直線的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在正四棱錐S-ABCD中,E,M,N分別是BC,CD,SC的中點,動點P在線段MN上運動時,下列四個結論:①EP⊥AC;②EP∥BD;③EP∥平面SBD;④EP⊥平面SAC,其中恒成立的為( )
A.①③B.③④C.①②D.②③④
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com