【題目】【廣東省惠州市2017屆高三上學(xué)期第二次調(diào)研】已知點(diǎn),點(diǎn)
是圓
上的任意一點(diǎn),線段
的垂直平分線與直線
交于點(diǎn)
.
(Ⅰ)求點(diǎn)的軌跡方程;
(Ⅱ)若直線與點(diǎn)
的軌跡有兩個(gè)不同的交點(diǎn)
和
,且原點(diǎn)
總在以
為直徑的圓的內(nèi)部,求實(shí)數(shù)
的取值范圍.
【答案】(Ⅰ);(Ⅱ)
【解析】
試題分析:(Ⅰ)求動(dòng)點(diǎn)軌跡方程,由題意動(dòng)點(diǎn)E滿足,軌跡是橢圓,由橢圓標(biāo)準(zhǔn)方程可得結(jié)論;(Ⅱ)原點(diǎn)
總在以
為直徑的圓的內(nèi)部,即∠POQ大于90°,反應(yīng)在數(shù)量上就是
,
因此設(shè)設(shè),
,把直線與橢圓的方程聯(lián)立消去y得x的一元二次方程,從而得
,
,計(jì)算
,用
,
代入
后得
的不等式,從而可求得
的范圍.
試題解析:(Ⅰ)由題意知:,
的軌跡是以
、
為焦點(diǎn)的橢圓,其軌跡方程為
…………………4分
(Ⅱ)設(shè),
,則將直線與橢圓的方程聯(lián)立得:
,消去
,得:
,
,
………①
,
…………………6分
原點(diǎn)
總在以
為直徑的圓的內(nèi)部
即
……7分
而……9分
即,且滿足①式
的取值范圍是
…12分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校藝術(shù)節(jié)對(duì)同一類的,
,
,
四項(xiàng)參賽作品,只評(píng)一項(xiàng)一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲、乙、丙、丁四位同學(xué)對(duì)這四項(xiàng)參賽作品獲獎(jiǎng)情況預(yù)測(cè)如下:
甲說(shuō):“或
作品獲得一等獎(jiǎng)”
乙說(shuō):“作品獲得一等獎(jiǎng)”
丙說(shuō):“,
兩項(xiàng)作品未獲得一等獎(jiǎng)”
丁說(shuō):“作品獲得一等獎(jiǎng)”.
若這四位同學(xué)中只有兩位說(shuō)的話是對(duì)的,則獲得一等獎(jiǎng)的作品是__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為
,點(diǎn)
是橢圓
上的點(diǎn),離心率
.
(1)求橢圓的方程;
(2)點(diǎn)在橢圓
上,若點(diǎn)
與點(diǎn)
關(guān)于原點(diǎn)對(duì)稱,連接
并延長(zhǎng)與橢圓
的另一個(gè)交點(diǎn)為
,連接
,求
面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等差數(shù)列的前
項(xiàng)和為
,公差
,且
,
成等比數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;
(2)設(shè),求數(shù)列
的前
項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】將函數(shù)y=2sin(﹣2x+ )的圖象向左平移
個(gè)單位后,得到的圖象對(duì)應(yīng)的解析式應(yīng)該是( )
A.y=﹣2sin(2x)
B.y=﹣2sin(2x+ )
C.y=﹣2sin(2x﹣ )
D.y=﹣2sin(2x+ )
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地區(qū)擬建立一個(gè)藝術(shù)博物館,采取競(jìng)標(biāo)的方式從多家建筑公司選取一家建筑公司,經(jīng)過層層篩選,甲、乙兩家建筑公司進(jìn)入最后的招標(biāo).現(xiàn)從建筑設(shè)計(jì)院聘請(qǐng)專家設(shè)計(jì)了一個(gè)招標(biāo)方案:兩家公司從個(gè)招標(biāo)問題中隨機(jī)抽取
個(gè)問題,已知這
個(gè)招標(biāo)問題中,甲公司可正確回答其中的
道題目,而乙公司能正確回答毎道題目的概率均為
,甲、乙兩家公司對(duì)每題的回答都是相互獨(dú)立,互不影響的.
(1)求甲、乙兩家公司共答對(duì)道題目的概率;
(2)請(qǐng)從期望和方差的角度分析,甲、乙兩家哪家公司競(jìng)標(biāo)成功的可能性更大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù),
(
).
(Ⅰ)若直線和函數(shù)
的圖象相切,求
的值;
(Ⅱ)當(dāng)時(shí),若存在正實(shí)數(shù)
,使對(duì)任意
,都有
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】正四棱錐P﹣ABCD,B1為PB的中點(diǎn),D1為PD的中點(diǎn),則兩個(gè)棱錐A﹣B1CD1 , P﹣ABCD的體積之比是( )
A.1:4
B.3:8
C.1:2
D.2:3
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P-ABCD中,O為AC與BD的交點(diǎn),AB平面PAD,△PAD是正三角形,DC//AB,DA=DC=2AB.
(1)若點(diǎn)E為棱PA上一點(diǎn),且OE∥平面PBC,求的值;
(2)求證:平面PBC平面PDC.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com