【題目】中國古代儒家要求學生掌握六種基本才藝:禮、樂、射、御、書、數,簡稱“六藝”,某中學為弘揚“六藝”的傳統文化,分別進行了主題為“禮、樂、射、御、書、數”六場傳統文化知識的競賽,現有甲、乙、丙三位選手進入了前三名的最后角逐、規定:每場知識競賽前三名的得分都分別為(
,且
);選手最后得分為各場得分之和,在六場比賽后,已知甲最后得分為26分,乙和丙最后得分都為11分,且乙在其中一場比賽中獲得第一名,則下列推理正確的是( )
A. 每場比賽第一名得分為4 B. 甲可能有一場比賽獲得第二名
C. 乙有四場比賽獲得第三名 D. 丙可能有一場比賽獲得第一名
科目:高中數學 來源: 題型:
【題目】已知圓心為的圓,滿足下列條件:圓心
位于
軸正半軸上,與直線
相切,且被
軸截得的弦長為
,圓
的面積小于13.
(1)求圓的標準方程;
(2)若點,點
是圓
上一點,點
是
的重心,求點
的軌跡方程;
(3)設過點的直線
與圓
交于不同的兩點
,
,以
,
為鄰邊作平行四邊形
.是否存在這樣的直線
,使得直線
與
恰好平行?如果存在,求出
的方程;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】分形幾何學是美籍法國數學家伯努瓦曼德爾布羅特(
)在20世紀70年代創立的一門新學科,它的創立為解決傳統眾多領域的難題提供了全新的思路.下圖是按照分型的規律生長成的一個樹形圖,則第10行的空心圓的個數是__________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知,函數
.
(1)當時,解不等式
;
(2)若關于的方程
的解集中恰有兩個元素,求
的取值范圍;
(3)設,若對任意
,函數
在區間
上的最大值與最小值的和不大于
,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】給出下列說法:
①集合與集合
是相等集合;
②不存在實數,使
為奇函數;
③若,且f(1)=2,則
;
④對于函數
在同一直角坐標系中,若
,則函數
的圖象關于直線
對稱;
⑤對于函數
在同一直角坐標系中,函數
與
的圖象關于直線
對稱;其中正確說法是____________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知=(2﹣sin(2x+
),﹣2),
=(1,sin2x),f(x)=
, (x∈[0,
])
(1)求函數f(x)的值域;
(2)設△ABC的內角A,B,C的對邊長分別為a,b,c,若f()=1,b=1,c=
, 求a的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ae2x﹣be﹣2x﹣cx(a,b,c∈R)的導函數f′(x)為偶函數,且曲線y=f(x)在點(0,f(0))處的切線的斜率為4﹣c.
(1)確定a,b的值;
(2)若c=3,判斷f(x)的單調性;
(3)若f(x)有極值,求c的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com