分析 (1)把t=-2代入參數方程得Q$(0,-1-\sqrt{3})$,從而求出|PQ|的值;
(2)把參數方程代入圓方程有:${(1+\frac{1}{2}t)^2}+{(-1+\frac{{\sqrt{3}}}{2}t)^2}=4$,整理得:${t^2}+(1-\sqrt{3})t-2=0$,利用參數的幾何意義求|MN|的值.
解答 解:(1)把t=-2代入參數方程得Q$(0,-1-\sqrt{3})$,|PQ|=$\sqrt{{{(1-0)}^2}+{{(-1+1+\sqrt{3})}^2}}=2$.(5分)
(2)把參數方程代入圓方程有:${(1+\frac{1}{2}t)^2}+{(-1+\frac{{\sqrt{3}}}{2}t)^2}=4$,整理得:${t^2}+(1-\sqrt{3})t-2=0$,
于是${t_1}+{t_2}=\sqrt{3}-1,{t_1}{t_2}=-2$,
所以|MN|=|t1-t2|,代入得$|{MN}|=\sqrt{12-2\sqrt{3}}$.(10分)
點評 本題考查參數方程的運用,考查參數的幾何意義,屬于中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 2$\sqrt{2}$-3 | B. | 2$\sqrt{2}$-1 | C. | 2$\sqrt{2}$+3 | D. | 2$\sqrt{2}$+1 |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com