【題目】如圖,四邊形ABCD為矩形,DA⊥平面ABE,AE=EB=BC=2,
BF⊥平面ACE,且點F在CE上.
(1)求證:AE⊥BE;
(2)求三棱錐D—AEC的體積;
(3)設點M在線段AB上,且滿足AM=2MB,試在線段CE上確定一點N,
使得MN∥平面DAE.
【答案】(1);(2)
.(3)點N為線段CE上靠近點C的一個三等分點
【解析】試題分析:(1)先證明,可得AE⊥平面BCE,由此能證明
;(2)由
,能求出三棱錐
的體積;(3)過點
作
,交
于點
,過點
作
,交
于點
,連接
,推導出
平面
,由此能求出當點
為線段
上靠近點
的一個三等分點時,
平面
.
試題解析:(1)證明 由AD⊥平面ABE及AD∥BC,
得BC⊥平面ABE,BC⊥AE,
而BF⊥平面ACE,所以BF⊥AE,
又BC∩BF=B,所以AE⊥平面BCE,
又BE平面BCE,故AE⊥BE.
在△ABE中,過點E作EH⊥AB于點H,
則EH⊥平面ACD.
由已知及(1)得EH=AB=
,S△ADC=2
.
故VD—AEC=VE—ADC=×2
×
=
.(10分)
(3)解:在△ABE中,過點M作MG∥AE交BE于點G,在△BEC中過點G作GN∥BC交EC于點N,
連結MN,則由=
=
=
,得CN=
CE.
由MG∥AE,AE平面ADE,
MG平面ADE,則MG∥平面ADE.(12分)
再由GN∥BC,BC∥AD,AD平面ADE,GN平面ADE,
得GN∥平面ADE,所以平面MGN∥平面ADE.
又MN平面MGN,則MN∥平面ADE.(15分)
故當點N為線段CE上靠近點C的一個三等分點時,
MN∥平面ADE.
【方法點晴】本題主要考查線面平行的判定定理、直線和平面成的角的定義及求法、利用等積變換求三棱錐體積,屬于難題.證明線面平行的常用方法:①利用線面平行的判定定理,使用這個定理的關鍵是設法在平面內找到一條與已知直線平行的直線,可利用幾何體的特征,合理利用中位線定理、線面平行的性質或者構造平行四邊形、尋找比例式證明兩直線平行.②利用面面平行的性質,即兩平面平行,在其中一平面內的直線平行于另一平面. 本題(1)是就是利用方法①證明的.
科目:高中數學 來源: 題型:
【題目】為了了解初三學生女生身高情況,某中學對初三女生身高進行了一次測量,所得數據整理后列出了頻率分布表如下:
組 別 | 頻數 | 頻率 |
145.5~149.5 | 1 | 0.02 |
149.5~153.5 | 4 | 0.08 |
153.5~157.5 | 20 | 0.40 |
157.5~161.5 | 15 | 0.30 |
161.5~165.5 | 8 | 0.16 |
165.5~169.5 | m | n |
合 計 | M | N |
(1)求出表中所表示的數分別是多少?
(2)畫出頻率分布直方圖.
(3)全體女生中身高在哪組范圍內的人數最多?由直方圖確定此組數據中位數是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知動圓過定點,且與直線
相切.
(1)求動圓圓心的軌跡的方程;
(2)過(1)中軌跡上的點
作兩條直線分別與軌跡
相交于
兩點,試探究:當直線
的斜率存在且傾斜角互補時,直線
的斜率是否為定值?若是,求出這個定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設橢圓(
)的右焦點為
,右頂點為
,已知
,其中
為坐標原點,
為橢圓的離心率.
(1)求橢圓的方程;
(2)設過點的直線
與橢圓交于點
(
不在
軸上),垂直于
的直線與
交于點
,與
軸交于點
,若
,且
,求直線
的斜率的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某企業生產A,B兩種產品,生產1噸A種產品需要煤4噸、電18千瓦;生產1噸B種產品需要煤1噸、電15千瓦。現因條件限制,該企業僅有煤10噸,并且供電局只能供電66千瓦,若生產1噸A種產品的利潤為10000元;生產1噸B種產品的利潤是5000元,試問該企業如何安排生產,才能獲得最大利潤?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在平面直角坐標系中,圓
的參數方程為
為參數),在以原點
為極點,
軸的非負半軸為極軸建立的極坐標系中,直線
的極坐標方程為
.
(1)求圓的普通方程和直線
的直角坐標方程;
(2)設直線與
軸,
軸分別交于
兩點,點
是圓
上任一點,求
兩點的極坐標和
面積的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com