【題目】如圖,在正方體中,點
是底面
的中心,
是線段
的上一點。
(1)若為
的中點,求直線
與平面
所成角的正弦值;
(2)能否存在點使得平面
平面
,若能,請指出點
的位置關系,并加以證明;若不能,請說明理由。
【答案】(1) (2)見證明
【解析】
(1)建立空間坐標系得到直線的方向向量和面的法向量,再由向量的夾角公式得到結果;(2)建立坐標系得到兩個面的法向量,再由法向量互相垂直得到結果.
不妨設正方體的棱長為2,以,
,
分別為
,
,
軸建立如圖所示的空間直角坐標系
,則
,
,
,
.
(1)因為點是
的中點,
所以點的坐標為
.
所以,
,
.
設是平面
的法向量,則
,
即.
取,則
,所以平面
的一個法向量為
.
所以
.
所以直線與平面
所成角的正弦值為
.
(2)假設存在點使得平面
平面
,設
.
顯然,
.
設是平面
的法向量,則
,即
,
取,則
,
,所以平面
的一個法向量為
.
因為,所以點
的坐標為
.
所以,
.
設是平面
的法向量,則
,即
.
取,則
,所以平面
的一個法向量為
.
因為平面平面
,所以
,即
,
,解得
.
所以的值為2.即當
時,平面
平面
.
科目:高中數學 來源: 題型:
【題目】下列說法中錯誤的是( )
A. 從某社區65戶高收入家庭,280戶中等收入家庭,105戶低收入家庭中選出100戶調查社會購買力的某一項指標,應采用的最佳抽樣方法是分層抽樣
B. 線性回歸直線一定過樣本中心點
C. 若兩個隨機變量的線性相關性越強,則相關系數的值越接近于1
D. 若一組數據1、、2、3的眾數是2,則這組數據的中位數是2
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四邊形中,
,
,四邊形
為矩形,且
平面
,
.
(1)求證:平面
;
(2)點在線段
上運動,當點
在什么位置時,平面
與平面
所成銳二面角最大,并求此時二面角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】天壇公園是明、清兩代皇帝“祭天”“祈谷”的場所.天壇公園中的圜丘臺共有三層(如圖1所示),上層壇的中心是一塊呈圓形的大理石板,從中心向外圍以扇面形石(如圖2所示).上層壇從第一環至第九環共有九環,中層壇從第十環至第十八環共有九環,下層壇從第十九環至第二十七環共有九環;第一環的扇面形石有9塊,從第二環起,每環的扇面形石塊數比前一環多9塊,則第二十七環的扇面形石塊數是______;上、中、下三層壇所有的扇面形石塊數是_______.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某家具廠有方木料90,五合板600
,準備加工成書桌和書櫥出售.已知生產第張書桌需要方木料O.l
,五合板2
,生產每個書櫥而要方木料0.2
,五合板1
,出售一張方桌可獲利潤80元,出售一個書櫥可獲利潤120元.
(1)如果只安排生產書桌,可獲利潤多少?
(2)怎樣安排生產可使所得利潤最大?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓與圓
關于直線
對稱.
(1)求圓的方程;
(2)過點作兩條相異直線分別與圓
相交于
、
兩點,若直線
、
的傾斜角互補,問直線
與直線
是否垂直?請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知曲線的方程為
.
(1)當時,試確定曲線
的形狀及其焦點坐標;
(2)若直線交曲線
于點
、
,線段
中點的橫坐標為
,試問此時曲線
上是否存在不同的兩點
、
關于直線
對稱?
(3)當為大于1的常數時,設
是曲線
上的一點,過點
作一條斜率為
的直線
,又設
為原點到直線
的距離,
分別為點
與曲線
兩焦點的距離,求證
是一個定值,并求出該定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線與
軸交于點
,直線
與拋物線
交于點
,
兩點.直線
,
分別交橢圓
于點
、
(
,
與
不重合)
(1)求證:;
(2)若,求直線
的斜率
的值;
(3)若為坐標原點,直線
交橢圓
于
,
,若
,且
,則
是否為定值?若是,求出定值;若不是,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com