【題目】天壇公園是明、清兩代皇帝“祭天”“祈谷”的場所.天壇公園中的圜丘臺共有三層(如圖1所示),上層壇的中心是一塊呈圓形的大理石板,從中心向外圍以扇面形石(如圖2所示).上層壇從第一環至第九環共有九環,中層壇從第十環至第十八環共有九環,下層壇從第十九環至第二十七環共有九環;第一環的扇面形石有9塊,從第二環起,每環的扇面形石塊數比前一環多9塊,則第二十七環的扇面形石塊數是______;上、中、下三層壇所有的扇面形石塊數是_______.
科目:高中數學 來源: 題型:
【題目】已知拋物線的焦點為
,過點
,斜率為1的直線與拋物線
交于點
,
,且
.
(1)求拋物線的方程;
(2)過點作直線交拋物線
于不同于
的兩點
、
,若直線
,
分別交直線
于
兩點,求
取最小值時直線
的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲、乙、丙三家企業產品的成本分別為10000,12000,15000,其成本構成如下圖所示,則關于這三家企業下列說法錯誤的是( )
A.成本最大的企業是丙企業B.費用支出最高的企業是丙企業
C.支付工資最少的企業是乙企業D.材料成本最高的企業是丙企業
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一個三角形數表按如下方式構成(如圖:其中項數):第一行是以4為首項,4為公差的等差數列,從第二行起,每一個數是其肩上兩個數的和,例如:
;
為數表中第
行的第
個數.
…
…
…
……
(1)求第2行和第3行的通項公式和
;
(2)證明:數表中除最后2行外每一行的數都依次成等差數列,并求關于
的表達式;
(3)若,
,試求一個等比數列
,使得
,且對于任意的
,均存在實數
,當
時,都有
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在多面體中,平面
平面
.四邊形
為正方形,四邊形
為梯形,且
,
,
,
.
(1)求證:;
(2)求直線與平面
所成角的正弦值;
(3)線段上是否存在點
,使得直線
平面
若存在,求
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某學校需要從甲、乙兩名學生中選一人參加數學競賽,抽取了近期兩人次數學考試的成績,統計結果如下表:
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | |
甲的成績(分) | |||||
乙的成績(分) |
(1)若從甲、乙兩人中選出一人參加數學競賽,你認為選誰合適?請說明理由.
(2)若數學競賽分初賽和復賽,在初賽中有兩種答題方案:
方案一:每人從道備選題中任意抽出
道,若答對,則可參加復賽,否則被淘汰.
方案二:每人從道備選題中任意抽出
道,若至少答對其中
道,則可參加復賽,否則被潤汰.
已知學生甲、乙都只會道備選題中的
道,那么你推薦的選手選擇哪種答題方條進人復賽的可能性更大?并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點為橢圓
上任意一點,直線
與圓
交于
兩點,點
為橢圓
的左焦點.
(Ⅰ)求橢圓的離心率及左焦點
的坐標;
(Ⅱ)求證:直線與橢圓
相切;
(Ⅲ)判斷是否為定值,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列命題中正確命題的序號是( )
①函數f(x)在定義域R內可導,“f′(1)=0”是“函數f(x)在x=1處取極值”的充分不必要條件;
②函數f(x)=x3ax在[1,2]上單調遞增,則a≥﹣4
③在一次射箭比賽中,甲、乙兩名射箭手各射箭一次.設命題p:“甲射中十環”,命題q:“乙射中十環”,則命題“至少有一名射箭手沒有射中十環”可表示為(¬p)∨(¬q);
④若橢圓左、右焦點分別為F1,F2,垂直于x軸的直線交橢圓于A,B兩點,當直線過右焦點時,△ABF1的周長取最大值
A.①③④B.②③④C.②③D.①④
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com