【題目】如圖,三棱錐中,
底面
為等邊三角形,
分別是
的中點.
(1)證明:平面平面
;
(2)如何在上找一點
,使
平面
并說明理由;
(3)若,對于(2)中的點
,求三棱錐
的體積.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)且
時,求函數(shù)
的單調(diào)區(qū)間;
(2)當(dāng)時,若函數(shù)
的兩個極值點分別為
、
,證明
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形中,
,
,點
是邊
上一點,且
,點
是
的中點,將
沿著
折起,使點
運動到點
處,且滿足
.
(1)證明:平面
;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,橢圓
(
)的左右兩個焦點分別是
、
,
在橢圓
上運動.
(1)若對有最大值為120°,求出
、
的關(guān)系式;
(2)若點是在橢圓上位于第一象限的點,過點
作直線
的垂線
,過
作直線
的垂線
,若直線
、
的交點
在橢圓
上,求點
的坐標(biāo);
(3)若設(shè),在(2)成立的條件下,試求出
、
兩點間距離的函數(shù)
,并求出
的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列的前
項1,3,7,
,
(
)組成集合
,從集合
中任取
(
)個數(shù),其所有可能的
個數(shù)的乘積的和為
(若只取一個數(shù),規(guī)定乘積為此數(shù)本身),記
.例如:當(dāng)
時,
,
,
;
時,
,
,
,
.
(1)當(dāng)時,求
,
,
,
的值;
(2)證明:時集合
的
與
時集合
的
(為以示區(qū)別,用
表示)有關(guān)系式
(
,
);
(3)試求(用
表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某廠生產(chǎn)某種產(chǎn)品的年固定成本為250萬元,每生產(chǎn)千件,需另投入成本
,當(dāng)年產(chǎn)量不足80千件時,
(萬元);當(dāng)年產(chǎn)量不小于80千件時,
(萬元),每件售價為0.05萬元,通過市場分析,該廠生產(chǎn)的商品能全部售完.
(1)寫出年利潤(萬元)關(guān)于年產(chǎn)量
(千件)的函數(shù)解析式;
(2)年產(chǎn)量為多少千件時,該廠在這一商品的生產(chǎn)中所獲利潤最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點F1、F2為雙曲線(b>0)的左、右焦點,過F2作垂直于x軸的直線,在x軸上方交雙曲線C于點M,且∠MF1F2=30°,圓O的方程是x2+y2=b2.
(1)求雙曲線C的方程;
(2)過雙曲線C上任意一點P作該雙曲線兩條漸近線的垂線,垂足分別為P1、P2,求的值;
(3)過圓O上任意一點Q作圓O的切線l交雙曲線C于A、B兩點,AB中點為M,求證:|AB|=2|OM|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖(1)所示,五邊形中,
,
,
分別是線段
的中點,且
,現(xiàn)沿
翻折,使得
,得到的圖形如圖(2)所示.
圖(1) 圖(2)
(1)證明:平面
;
(2)若平面與平面
所成角的平面角的余弦值為
,求
的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com